全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

家蚕抗核型多角体病毒的研究进展

DOI: 10.1360/N972014-00228, PP. 1285-1297

Keywords: 家蚕,核型多角体病毒,抗性,遗传分析,SSH,蛋白质组,免疫反应

Full-Text   Cite this paper   Add to My Lib

Abstract:

家蚕核型多角体病毒(Bombyxmorinucleopolyhedrovirus,BmNPV)病是世界养蚕业一种重大的传染疾病,该病引起的蚕茧损失占蚕病引起损失总数的60%以上,长期以来对这种病毒病的防治还没有很好的解决方法.各国研究人员在寻找抗性基因、阐述抗性机制以及通过传统育种或者转基因构建抗BmNPV家蚕等方面进行了很好的尝试,也取得了一定的成果.本文将最新的家蚕抗BmNPV的研究结果进行归纳和整理,尝试对其可能的分子机制进行探讨,并对现有的研究结果进行深入挖掘,希望有助于家蚕抗病分子机制的深入研究.

References

[1]  22 Feng F, Hu P, Chen K P. Progress of antiviral mechanisms in the mulberry silkworm: A review. African J Microbiol Res, 2013, 7: 1173-1178
[2]  23 Yao Q, Li M, Wang Y, et al. Screening of molecular markers for NPV resistance in Bombyx mori L. (Lep., Bombycidae). J Appl Entomol, 2003, 127: 134-136
[3]  24 Liu X Y, Yao Q, Chen K P. Studies on RAPD markers for NPV resistance in silkworm (Bombyx mori) using RAPD method. Jiangsu Univ (Nati Sci Ed), 2004, 5: 17-20
[4]  25 Feng F, Fu J, Hu P, et al. Genetic analysis of baculovirus resistance in lepidopteran model insect Bombyx mori L. African J Biotechnol, 2012, 11: 14417-14421
[5]  26 Xu J P. Studying of BmNPV resistance differential display in Bombyx mori and related novel genes Bm3a and Bmsop2 (in Chinese). Doctor Dissertation. Zhenjiang: Jiangsu Universtiy, 2005 [徐家萍. 家蚕对BmNPV抗性差异表达及相关新基因Bms3a和Bmsop2的研究. 博士学位论文. 镇江: 江苏大学,
[6]  27 Xu J P, Chen K P. Identification and characterization of Bms3a in Bombyx mori L. African J Biotechnol, 2008, 7: 3424-3430
[7]  28 Xu J P, Chen K P, Yao Q, et al. Identification and characterization of an NPV infection-related gene Bmsop2 in Bombyx mori L. J Appl Entomol, 2005, 129: 425-431
[8]  29 Iwanaga M, Shimada T, Kobayashi M, et al. Identification of differentially expressed host genes in Bombyx mori nucleopolyhedrovirus infected cells by using subtractive hybridization. Appl Entomol Zool, 2007, 42: 151-159
[9]  30 Bao Y Y, Tang X D, Lü Z Y, et al. Gene expression profiling of resistant and susceptible Bombyx mori strains reveals nucleopolyhedrovirus-associated variations in host gene transcript levels. Genomics, 2009, 94: 138-145
[10]  31 Bao Y Y, Lü Z Y, Liu Z B, et al. Comparative analysis of Bombyx mori nucleopolyhedrovirus responsive genes in fat body and haemocyte of B. mori resistant and susceptible strains. Insect Mol Biol, 2010, 19: 347-358
[11]  32 Sagisaka A, Fujita K, Nakamura Y, et al. Genome-wide analysis of host gene expression in the silkworm cells infected with Bombyx mori nucleopolyhedrovirus. Virus Res, 2010, 147: 166-175
[12]  33 Zhou Y, Gao L, Shi H, et al. Microarray analysis of gene expression profile in resistant and susceptible Bombyx mori strains reveals resistance-related genes to nucleopolyhedrovirus. Genomics, 2013, 101: 256-262
[13]  34 Liu X Y. Bombyx mori L. nucleopolyhedrovirus (BmNPV) and proteome analysis of silkworm proteins relatedto BmNPV infection resistance (in Chinese). Doctor Dissertation. Zhenjiang: Jiangsu University, 2009 [刘晓勇. 家蚕核型多角体病毒与家蚕抗病毒相关的蛋白质组分析. 博士学位论文. 镇江: 江苏大学,
[14]  35 Liu X Y, Yao Q, Wang Y, et al. Proteomic analysis of nucleopolyhedrovirus infection resistance in the silkworm, Bombyx mori (Lepidoptera: Bombycidae). J Invertebrate Pathol, 2010, 105: 84-90
[15]  36 Zhao Y. Molecular tagging and mapping in Bombyx mori against BmNPV and the differential protein expression profiling in the midgut tissue of silkworm infected by BmNPV (in Chinese). Doctor Dissertation. Zhenjiang: Jiangsu University, 2007 [赵远. 家蚕抗核型多角体病毒病的微卫星分子标记筛选、定位及其病毒侵染家蚕中肠组织的差异蛋白质表达图谱研究. 博士学位论文. 镇江: 江苏大学,
[16]  37 Qin L G, Xia H C, Shi H F, et al. Comparative proteomic analysis reveals that caspase-1 and serine protease may be involved in silkworm resistance to Bombyx mori nuclear polyhedrosis virus. J Proteom, 2012, 75: 3630-3638
[17]  46 Hedstrom L. Serine protease mechanism and specificity. Chem Rev, 2002, 102: 4501-4524
[18]  47 Sugumaran M, Saul S J, Ramesh N. Endogenous protease inhibitors prevent undesired activation of prophenolase in insect hemolymph. Biochem Biophys Res Commun, 1985, 132: 1124-1129
[19]  48 Saul S J, Sugumaran M. Protease mediated prophenoloxidase activation in the hemolymph of the tobacco hornworm, Manduca sexta. Arch Insect Biochem Physiol, 1987, 5: 1-11
[20]  49 Adamo S A. Estimating disease resistance in insects: Phenoloxidase and lysozyme-like activity and disease resistance in the cricket Gryllus Texensis. J Insect Physiol, 2004, 50: 209-216
[21]  50 Huntington J. Serpin structure, function and dysfunction. J Thrombosis Haemostasis, 2011, 9: 26-34
[22]  51 Shrestha S, Kim Y. Factors affecting the activation of hemolymph prophenoloxidase of Spodoptera exigua (Lepidoptera: Noctuidae). J Asia-Pacific Entomol, 2007, 10: 131-135
[23]  52 Bangham J, Jiggins F, Lemaitre B. Insect immunity: The post-genomic era. Immunity, 2006, 25: 1-5
[24]  53 Abe T, Hemmi H, Miyamoto H, et al. Involvement of the Toll-like receptor 9 signaling pathway in the induction of innate immunity by baculovirus. J Virol, 2005, 79: 2847-2858
[25]  54 Zhang X L, Ma H Y, Cao G L, et al. A preliminary study on the response of JAK/STAT pathway to Bombyx mori baculovirus infection (in Chinese). Sci Sericul, 2011, 4: 682-687 [张晓丽, 马焕艳, 曹广力, 等. JAK/STAT途径对家蚕杆状病毒感染应答的初探. 蚕业科学, 2011, 4: 682-
[26]  55 Selot R, Kumar V, Shukla S, et al. Identification of a soluble NADPH oxidoreductase (BmNOX) with antiviral activities in the gut juice of bombyx mori. Biosci Biotechnol Biochem, 2007, 71: 200-205
[27]  56 Ponnuvel K M, Nakazawa H, Furukawa S, et al. A lipase isolated from the silkworm Bombyx mori shows antiviral activity against nucleopolyhedrovirus. J Virol, 2003, 77: 10725-10729
[28]  57 Nakazawa H, Tsuneishi E, Ponnuvel K M, et al. Antiviral activity of a serine protease from the digestive juice of Bombyx mori larvae against nucleopolyhedrovirus. Virology, 2004, 321: 154-162
[29]  58 Hayashiya K, Nishida J, Uchida Y. The mechanism of formation of the red fluorescent protein in the digestive juice of silkworm larvae: The formation of chlorophyllide-a. Jpn J Appl Entomol Zool, 1976, 20: 37-43
[30]  59 Hayashiya K. Red fluorescent protein in the digestive juice of the silkworm larvae fed on host-plant mulberry leaves. Entomol Exper Appl, 1978, 24: 428-436
[31]  60 Sunagar S G, Lakkappan V J, Ingalhalli S S, et al. Characterization of the photochromic pigments in red fluorescent proteins purified from the gut juice of the silkworm Bombyx mori L. Photochem Photobiol, 2008, 84: 1440-1444
[32]  61 Sunagar S G, Savanurmath C J, Hinchigeri S B. The profiles of red fluorescent proteins with antinucleopolyhedrovirus activity in races of the silkworm Bombyx mori. J Insect Physiol, 2011, 57: 1707-1714
[33]  62 Jiang L, Wang G, Cheng T, et al. Resistance to Bombyx mori nucleopolyhedrovirus via overexpression of an endogenous antiviral gene in transgenic silkworms. Arch Virol, 2012, 157: 1323-1328
[34]  63 Hancock R E, Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol, 2000, 8: 402-410
[35]  64 Bhoj V G, Chen Z J. Ubiquitylation in innate and adaptive immunity. Nature, 2009, 458: 430-437
[36]  65 Cai K Y, Chen K P, Liu X Y, et al. Differential expression of haemolymph proteome of resistant strain and susceptible strain for BmNPV in Bombyx mori L (in Chinese). Chin J Biotech, 2008, 24: 285-290 [蔡克亚, 陈克平, 刘晓勇, 等. 家蚕抗 BmNPV品系与感性品系血淋巴液蛋白质组的差异分析. 生物工程学报, 2008, 24: 285-
[37]  66 González-Santoyo I, Córdoba-Aguilar A. Phenoloxidase: A key component of the insect immune system. Entomol Exper Appl, 2012, 142: 1-16
[38]  9 Xia Q Y, Zhou Z, Lu C, et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science, 2004, 306: 1937-1940
[39]  10 Mita K, Kasahara M, Sasaki S, et al. The genome sequence of silkworm, Bombyx mori. DNA Res, 2004, 11: 27-35
[40]  11 Lü H S. Principles of Insect Immunology (in Chinese). Shanghai: Shanghai Scientific and Technical Publishers, 2008 [吕鸿声. 昆虫免疫学原理. 上海: 上海科学技术出版社,
[41]  12 Watanabe H. Resistance of the silkworm, Bombyx mori, to viral infections. Agricult Ecosyst Environ, 1986, 15: 131-139
[42]  13 Watanabe H, Aruga T. The effect of moult and the developmnt of nuclear polyhedrosis in the silkworm, Bombyx mori L. J Insect Pathol, 1971, 4: 72-76
[43]  14 Aratake Y. The different resistance between various Bombyx mori strains to BmNPV (in Chinese). Jap J Sericul Sci, 1973, 42: 230-238 [荒武义信. 家蚕不同品种抗NPV性能的差异. 日本蚕丝学杂志, 1973, 42: 230-
[44]  15 Zhang Y N, Liu S X, Huo Y M et al. Resistance identification of 6 kinds of Bombyx mori diseases in various silkworm strains (in Chinese). Sci Sericul, 1982, 8: 94-97 [张远能, 刘仕贤, 霍用梅, 等. 若干家蚕品种对六种主要蚕病的抗性鉴定. 蚕业科学, 1982, 8: 94-
[45]  16 Chen K P, Lin C Q, Wu D X, et al. Resistance of preservative Bombyx mori strains to nuclear polyhedrosis virus (in Chinese). Sci Sericul, 1991, 17: 45-46 [陈克平, 林昌麒, 吴冬秀, 等. 家蚕保存种对核型多角体病的抗性. 蚕业科学, 1991, 17: 45-
[46]  17 Chen K P, Lin C Q, Yao Q. Studies on the resistance to nuclear polyhedrosis virus (NPV) and its inheritance law in silkworm Bombyx mori (in Chinese). Sci Sericul, 1996, 22: 160-164 [陈克平, 林昌麒, 姚勤. 家蚕对核多角体病的抗性及遗传规律的研究. 蚕业科学, 1996, 22: 160-
[47]  18 Yao Q, Gao L, Chen K P, et al. Detection of proliferation of Bombyx mori nucleopolyhedrovirus in its host by fluorescence quantitative PCR. Acta Entomol Sin, 2005, 48: 871
[48]  19 Watanabe H. Genetic resistance of the silkworm, Bombyx mori to viral diseases. Curr Sci, 2002, 83: 439-446
[49]  20 Zafar B, Shabir A W, Malik M A, et al. A review: Disease resistance in mulberry silkworm Bombyx mori L. Asian J Sci Technol, 2013, 4: 157-166
[50]  21 Meng Z Q. Studies on resistant heredity law of Bombyx mori to B. mori nucleopolyhedrovirus (in Chinese). Sci Sericul, 1982, 8:133-138 [孟智启. 家蚕对核型多角体病毒病抵抗性遗传规律的研究. 蚕业科学, 1982, 8: 133-
[51]  38 Tanaka H, Ishibashi J, Fujita K, et al. A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochem Mol Biol, 2008, 38: 1087-1110
[52]  39 Angata T, Hayakawa T, Yamanaka M, et al. Discovery of siglec-14, a novel sialic acid receptor undergoing concerted evolution with siglec-5 in primates. FASEB J, 2006, 20: 1964-1973
[53]  40 Blasius A L, Colonna M. Sampling and signaling in plasmacytoid dendritic cells: The potential roles of siglec-H. Trends Immunol, 2006, 27: 255-260
[54]  41 Chi G, Gao L, Chen K P, et al. Preliminary characterization of a death-related gene in silkworm Bombyx mori. African J Biotechnol, 2009, 8: 2118-2124
[55]  42 Crocker P R, Paulson J C, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol, 2007, 7: 255-266
[56]  43 Varki A, Angata T. Siglecs—the major subfamily of I-type lectins. Glycobiology, 2006, 16: 1R-27R
[57]  98 Yao Q, Liu X Y, Tang X D, et al. Molecular markers-assisted breeding for silkworm resistant variety to BmNPV. Mol Plant Breed, 2005, 3: 537-542
[58]  99 Okano K, Shimada T, Mita K, et al. Comparative expressed-sequence-tag analysis of differential gene expression profiles in BmNPV-infected BmN cells. Virology, 2001, 282: 348-356
[59]  100 Schwarz R, Escasa S, Arif B. Inhibition of programmed cell death by baculoviruses: Potential in pest-management strategies. In: Insecticides Design Using Advanced Technologies. Heidelberg: Springer, 2007. 217-233
[60]  1 Vernick K D, Fujioka H, Seeley D C, et al. Plasmodium gallinaceum: A refractory mechanism of ookinete killing in the mosquito, Anopheles gambiae. Exper Parasitol, 1995, 80: 583-595
[61]  2 Lehane M. Peritrophic matrix structure and function. Annu Rev Entomol, 1997, 42: 525-550
[62]  3 Tzou P, Ohresser S, Ferrandon D, et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity, 2000, 13: 737-748
[63]  4 Levashina E A, Moita L F, Blandin S, et al. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles Gambiae. Cell, 2001, 104: 709-718
[64]  5 Ligoxygakis P, Pelte N, Ji C, et al. A serpin mutant links toll activation to melanization in the host defence of Drosophila. EMBO J, 2002, 21: 6330-6337
[65]  6 Meister M, Lagueux M. Drosophila blood cells. Cell Microbiol, 2003, 5: 573-580
[66]  7 Moreno-Habel D A, Biglang-awa I M, Dulce A, et al. Inactivation of the budded virus of Autographa Californica M nucleopolyhedrovirus by gloverin. J Invertebrate Pathol, 2012, 110: 92-101
[67]  8 Xiang Z H. Genetics and breeding for Bombyx mori (in Chinese). Beijing: China Agriculture Press, 1994 [向仲怀. 家蚕遗传育种学. 北京: 中国农业出版社,
[68]  44 Tassanakajon A, Somboonwiwat K, Supungul P, et al. Discovery of immune molecules and their crucial functions in shrimp immunity. Fish Shellfish Immunol, 2013, 34: 954-967
[69]  45 Jiang H, Kanost M R. The clip-domain family of serine proteinases in arthropods. Insect Biochem Mol Biol, 2000, 30: 95-105
[70]  67 Portt L, Norman G, Clapp C, et al. Anti-apoptosis and cell survival: A review. Biochim Biophys Acta Mol Cell Res, 2011, 1813: 238-259
[71]  68 Inbal B, Shani G, Cohen O, et al. Death-associated protein kinase-related protein 1, a novel serine/threonine kinase involved in apoptosis. Mol Cell Biol, 2000, 20: 1044-1054
[72]  69 Kawai T, Nomura F, Hoshino K, et al. Death-associated protein kinase 2 is a new calcium/calmodulin-dependent protein kinase that signals apoptosis through its catalytic activity. Oncogene, 1999, 18: 3471-3480
[73]  70 Morishima N, Okano K, Shibata T, et al. Homologous p35 proteins of baculoviruses show distinctive anti-apoptotic activities which correlate with the apoptosis-inducing activity of each virus. FEBS Lett, 1998, 427: 144-148
[74]  71 Rosenquist M. 14-3-3 proteins in apoptosis. Bra J Med Biol Res, 2003, 36: 403-408
[75]  72 Bachere E, Mialhe E, Noel D, et al. Knowledge and research prospects in marine mollusc and crustacean immunology. Aquaculture, 1995, 132: 17-32
[76]  73 Peskin A V, Low F M, Paton L N, et al. The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents. J Biol Chem, 2007, 282: 11885-11892
[77]  74 Rhee S G, Chae H Z, Kim K. Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Rad Biol Med, 2005, 38: 1543-1552
[78]  75 Yin Z, Ivanov V N, Habelhah H, et al. Glutathione s-transferase P elicits protection against H2O2-induced cell death via coordinated regulation of stress kinases. Cancer Res, 2000, 60: 4053-4057
[79]  76 Tachibana S I, Numata H, Goto S G. Gene expression of heat-shock proteins (hsp23, hsp70 and hsp90) during and after larval diapause in the blow fly Lucilia sericata. J Insect Physiol, 2005, 51: 641-647
[80]  77 Chen S, Smith D F. HOP as an adaptor in the heat shock protein 70 (HSP70) and HSP90 chaperone machinery. J Biol Chem, 1998, 273: 35194-35200
[81]  78 Liang D, Benko Z, Agbottah E, et al. Anti-VPR activities of heat shock protein 27. Mol Med, 2007, 13: 229
[82]  79 Goley E D, Ohkawa T, Mancuso J, et al. Dynamic nuclear actin assembly by ARP2/3 complex and a baculovirus WASP-like protein. Science, 2006, 314: 464-467
[83]  80 Ohkawa T, Volkman L E, Welch M D. Actin-based motility drives baculovirus transit to the nucleus and cell surface. J Cell Biol, 2010, 190: 187-195
[84]  81 Marek M, Merten O W, Galibert L, et al. Baculovirus VP80 protein and the F-actin cytoskeleton interact and connect the viral replication factory with the nuclear periphery. J Virol, 2011, 85: 5350-5362
[85]  82 Chen H Q, Chen K P, Yao Q, et al. Characterization of a late gene, orf67 from Bombyx mori nucleopolyhedrovirus. FEBS Lett, 2007, 581: 5836-5842
[86]  83 Volkman L, Storm K, Aivazachvili V, et al. Overexpression of actin in acmnpv-infected cells interferes with polyhedrin synthesis and polyhedra formation. Virology, 1996, 225: 369-376
[87]  84 Du X, Thiem S M. Responses of insect cells to baculovirus infection: Protein synthesis shutdown and apoptosis. J Virol, 1997, 71: 7866-7872
[88]  85 Hamajima R, Ito Y, Ichikawa H, et al. Degradation of rRNA in Bm-N cells from the silkworm Bombyx mori during abortive infection with heterologous nucleopolyhedroviruses. J General Virol, 2013, 94: 2102-2111
[89]  86 Lü P, Chen K, Yao Q, et al. Expression and localization of Bombyx mori V-ATPase 16 kDa subunit C. Zeitschrift fur Naturforschung, 2010, 65: 119-126
[90]  87 Lü P, Xia H, Gao L, et al. V-ATPase is involved in silkworm defense response against Bombyx mori nucleopolyhedrovirus. PLoS One, 2013, 8: e64962
[91]  88 Lepier A, Azuma M, Harvey W R, et al. K+/H+ antiport in the tobacco hornworm midgut: The K(+)-transporting component of the K+ pump. J Exper Biol, 1994, 196: 361-373
[92]  89 Castagna M, Shayakul C, Trotti D, et al. Cloning and characterization of a potassium-coupled amino acid transporter. Proc Natl Acad Sci USA, 1998, 95: 5395-5400
[93]  90 Vitelli R, Santillo M, Lattero D, et al. Role of the small GTPase Rab7 in the late endocytic pathway. J Biol Chem, 1997, 272: 4391-4397
[94]  91 Vonderheit A, Helenius A. Rab7 associates with early endosomes to mediate sorting and transport of semliki forest virus to late endosomes. PLoS Biol, 2005, 3: e233
[95]  92 Isobe R, Kojima K, Matsuyama T, et al. Use of RNAi technology to confer enhanced resistance toBmNPV on transgenic silkworms. Arch Virol, 2004, 149: 1931-1940
[96]  93 Kanginakudru S, Royer C, Edupalli S, et al. Targeting ie-1 gene by RNAi induces baculoviral resistance in lepidopteran cell lines and in transgenic silkworms. Insect Mol Biol, 2007, 16: 635-644
[97]  94 Jiang L, Zhao P, Wang G, et al. Comparison of factors that may affect the inhibitory efficacy of transgenic RNAi targeting of baculoviral genes in silkworm, Bombyx mori. Antivir Res, 2012, 97: 255-263
[98]  95 Xue R Y, Cao G L, Wang C L, et al. Inhibitory effects of cells transformed and transfected with ie-1 and lef-1 dsRNA expression elements on proliferation of Bombyx mori nucleopolyhedrovirus. Sci Sericul, 2008, 34: 250-254 [薛仁宇, 曹广力, 王崇龙, 等. ie-1和lef-1基因dsRNA表达元件转染及转化细胞对家蚕核型多角体病毒增殖的抑制. 蚕业科学, 2008, 2: 250-
[99]  96 Jiang L, Cheng T, Zhao P, et al. Resistance to BmNPV via overexpression of an exogenous gene controlled by an inducible promoter and enhancer in transgenic silkworm, Bombyx mori. PLoS One, 2012, 7: e41838
[100]  97 Asser-Kaiser S, Fritsch E, Undorf-Spahn K, et al. Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science, 2007, 317: 1916-1918

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133