全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

螺芴氧杂蒽(SFX)类有机半导体及其OLEDs

DOI: 10.1360/N972015-00232, PP. 1237-1250

Keywords: 螺环芳烃,有机半导体,串联反应,分子设计,电致发光

Full-Text   Cite this paper   Add to My Lib

Abstract:

一锅法(one-potmethod)合成螺环芳烃具有原料易得、锅-原子-步骤经济(PASE)等优势,成为绿色有机半导体的典范.本文回顾了螺环芳烃分子砌块及其应用于电子器件领域的历史,重点论述了以螺芴氧杂蒽(SFX)为代表的螺环芳烃的串联反应,SFX类有机半导体四元分子设计平台与其有机电致发光材料(包括深蓝色荧光有机电致发光二极管(OLEDs)材料、磷光三基色主体材料、磷光客体材料)的研究进展.其中,哑铃型SFX深蓝色荧光OLEDs器件的电流效率、功率效率、外量子效率分别为7.4cd/A,4.1lm/W,4.6%;SFX基电致磷光OLEDs的电流效率、功率效率、外量子效率分别为70.0cd/A,77.0lm/W,19.2%;同时实现了应用于磷光OLEDs的三基色与白光的单一主体材料.最后,展望了螺环芳烃的绿色合成方法、SFX类OLED显示与照明技术、电子学其他领域及智能器件等方面的可能应用.

References

[1]  1 Xie L H, Liang J, Song J, et al. Spirocyclic aromatic hydrocarbons (SAHs) and their synthetic methodologies. Curr Org Chem, 2010, 14: 2169-2195
[2]  2 Ebeyehu D, Walzer K, He G, et al. High ON/OFF ratio and stability of amorphous organic field-effect transistors based on spiro-linked compounds. Synth Met, 2005, 148: 267-270
[3]  3 Saragi T P I, Pudzich R, Fuhrmann L T, et al. Light responsive amorphous organic field-effect transistor based on spiro-linked compound. Opt Mater, 2007, 29: 879-884
[4]  4 Lin H W, Ku S Y, Su H C, et al. Highly efficient visible-blind organic ultraviolet photodetectors. Adv Mater, 2004, 17: 2489-2493
[5]  5 Saragi T P I, Spehr T, Siebert A, et al. Spiro compounds for organic optoelectronics. Chem Rev, 2007, 108: 1011-1065
[6]  6 Clarkson R G, Gomberg M. Spirans with four aromatic radicals on the spiro carbon atom. J Am Chem Soc, 1930, 52: 2881-2891
[7]  7 Tour J M, Wu R L, Schumm J S. Approaches to orthogonally fused conducting polymers for molecular electronics. J Am Chem Soc, 1990, 112: 5662-5663
[8]  8 Tour J M, Wu R, Schumm J S. Extended orthogonally fused conducting oligomers for molecular electronic devices. J Am Chem Soc, 1991, 113: 7064-7066
[9]  9 Salbeck J, Yu N, Bauer J, et al. Low molecular organic glasses for blue electroluminescence. Synth Met, 1997, 91: 209-215
[10]  10 Yu W L, Pei J, Huang W, et al. Spiro-functionalized polyfluorene derivatives as blue light-emitting materials. Adv Mater 2000, 12: 828-831
[11]  11 Kimura M, Kuwano S, Sawaki Y, et al. New 9-fluorene-type trispirocyclic compounds for thermally stable hole transport materials in OLEDs. J Mater Chem C, 2005, 15: 2393-2398
[12]  12 Saragi T P I, Fuhrmann L T, Salbeck J. Highly efficient deep-blue organic light-emitting diodes with doped transport layers. Synth Met, 2005, 148: 205-211
[13]  13 Spehr T, Pudzich R, Fuhrmann T, et al. Highly efficient light emitters based on the spiro concept. Org Electron, 2003, 4: 61-69
[14]  14 Shen J Y, Lee C Y, Huang T H, et al. High Tg blue emitting materials for electroluminescent devices. J Mater Chem C, 2005, 15: 2455-2463
[15]  15 Tao S L, Peng Z K, Zhang X H, et al. High efficient non-doped blue organic light-emitting diodes based on fluorine derivatives with high thermal stability. Adv Funct Mater, 2005, 15: 1716-1721
[16]  16 Shen W J, Dodda R, Wu C C, et al. Spirobifluorene-linked bisanthracene: An efficient blue emitter with pronounced thermal stability. Chem Mater, 2004, 16: 930-93l
[17]  17 Liao Y L, Lin C Y, Wong K T, et al. A novel ambipolar spirobifluorene derivative that behaves as an efficient blue-light emitter in organic light-emitting diodes. Org Lett, 2007, 9: 4511-4514
[18]  18 Jiang Z Q, Yao H Q, Zhang Z Q, et al. Novel oligo-9,9-spirobifluorenes through ortho-linkage as full hydrocarbon host for highly efficient phosphorescent OLEDs. Org Lett, 2009, 11: 2607-2610
[19]  19 Fan C, Chen Y H, Gan P, et al. Tri-, tetra- and pentamers of 9,9'-spirobifluorenes through full ortho-linkage: High triplet-energy pure hydrocarbon host for blue phosphorescent emitter. Org Lett, 2010, 12: 5648-5651
[20]  20 Lyu Y Y, Kwak J, Jeon W S, et al. Highly efficient red phosphorescent OLEDs based on non-conjugated silicon-cored spirobifluorene derivative doped with Ir-complexes. Adv Funct Mater, 2009, 19: 420-427
[21]  21 Wu C L, Chen C T, Chen C T. Synthesis and characterization of heteroatom-bridged bisspirobifluorenes for the application of organic light-emitting diodes. Org Lett, 2014, 16: 2114-2117
[22]  22 Sun M L, Zhu W S, Zhang Z S, et al. Nondoped deep-blue spirofluorenexanthene-based green organic semiconductors via a pot, atom, and step economic (PASE) route combining direct arylation and tandem reactions. J Mater Chem C, 2015, 3: 94-99
[23]  23 Wu Y G, Li J, Fu Y Q, et al. Synthesis of extremely stable blue light emitting poly(spirobifluorene)s with suzuki polycondensation. Org Lett, 2004, 6: 3485-3487
[24]  24 Liu F, Xie L H, Tang C, et al. Facile synthesis of spirocyclic aromatic hydrocarbon derivatives based on o-halobiaryl route and domino reaction for deep-blue organic semiconductors. Org Lett, 2009, 11: 3850-3853
[25]  25 Kim K S, Jeon Y M, Kim J W, et al. Blue light-emitting OLED using new spiro[fluorine-7,9'-benzofluorene] host and dopant materials. Org Electron, 2008, 9: 797-804
[26]  26 Kim K S, Jeon Y M, Lee H S, et al. Blue organic electroluminescent devices based on the spiro[fluorene-7,9'-benzofluorene] derivatives as host and dopant materials. Synth Met, 2008, 158: 870-875
[27]  27 Jeon S O, Jeon Y M, Kim J W, et al. Spiro[fluorene-7,9'-benzofluorene] host and dopant materials for blue light-emitting electroluminescence device. Synth Met, 2009, 159: 1147-1152
[28]  52 Qian Y, Xie G H, Chen S F, et al. A new spiro[fluorene-9,9'-xanthene]-based host material possessing no conventional hole- and electron-transporting units for efficient and low voltage blue PHOLED via simple two-step synthesis. Org Electron, 2012, 13: 2741-2746
[29]  53 Chen Q, Wang J X, Wang Q, et al. Spiro(fluorene-9,9'-xanthene)-based porous organic polymers: Preparation, porosity, and exceptional hydrogen uptake at low pressure. Macromolecules, 2011, 44: 7987-7993
[30]  59 Xie L H, Zhu R, Qian Y, et al. Spiro-functionalized ligand with supramolecular steric hindrance to control p-p interaction in the iridium complex for high-performance electrophosphorescent devices. J Phys Chem Lett, 2010, 1: 272-276
[31]  47 Zhao J, Xie G H, Yin C R, et al. Harmonizing triplet level and ambipolar characteristics of wide-gap phosphine oxide hosts toward highly efficient and low driving voltage blue and green PHOLEDs: An effective strategy based on spiro-systems. Chem Mater, 2011, 23: 5331-5339
[32]  48 Sun M L, Yue S Z, Lin J R, et al. Dimeric SFX host materials for red, green and blue phosphorescentorganic light-emitting devices. Synth Met, 2014, 195: 321-327
[33]  49 Gu J F, Xie G H, Zhang L, et al. Dumbbell-shaped spirocyclic aromatic hydrocarbon to control intermolecular p-p stacking interaction for high-performance nondoped deep-blue organic light-emitting devices. J Phys Chem Lett, 2010, 1: 2849-2853
[34]  50 Lin Z Q, Sun P J, Tay Y Y, et al. Kinetically controlled assembly of a spirocyclic aromatic hydrocarbon into polyhedral micro/nanocrystals. ACS Nano, 2012, 6: 5309-5319
[35]  51 Xie L H, Hou X Y, Hua Y R, et al., Facile synthesis of complicated 9,9-diarylfluorenes based on BF3·Et2O-mediated Friedel-Crafts reaction. Org Lett, 2006, 8: 3701-3704
[36]  54 Carbas B B, Asil D, Friend R H, et al. A new blue light emitting and electrochromic polyfluorene derivative for display applications. Org Electron, 2014, 15: 500-508
[37]  55 Carbas B B, Onal A M. New fluorine-xanthene-based hybrid electrochromic and fluorescent polymers via donor-acceptor approach. Electrochim Acta, 2012, 66: 38-44
[38]  56 Xie L H, Yin C R, Lai W Y, et al. Polyfluorene-based semiconductors combined with various periodic table elements for organic electronics. Prog Polym Sci, 2012, 37: 1192-1264
[39]  57 Xie H Z, Liu M W, Wang O Y, et al. Reduction of self-quenching effect in organic electrophosphorescence emitting devices via the use of sterically hindered spacers in phosphorescence molecules. Adv Mater, 2001, 13: 1245-1248
[40]  58 Xie L H, Hou X Y, Hua Y R, et al. An effective strategy to tune supramolecular interaction via a spiro-bridged spacer in oligothiophene-S,S-dioxides and their anomalous photoluminescent behavior. Org Lett, 2007, 9: 1619-1622
[41]  60 Liu B, Lin J Y, Lei Z F, et al. Solvent and steric hindrance effect of bulky poly(9,9-diarylfluorene)s on conformation, gelation, morphology and electroluminescence. Macromol Chem Phys, 2015. DOI: 10.1002/macp.201400568
[42]  61 Ulbricht C, Beyer B, Friebe C, et al. Recent developments in the application of phosphorescent iridium(III) complex systems. Adv Mater, 2009, 21: 4418-4441
[43]  62 Wong W Y, Ho C L. Heavy metal organometallic electrophosphors derived from multi-component chromophores. Coord Chem Rev, 2009, 253: 1709-1758
[44]  63 Zhou G, Wong W Y, Suo S. Recent progress and current challenges in phosphorescent white organic light-emitting diodes (WOLEDs). J Photochem Photobiol C Photochem Rev, 2010, 11: 133-156
[45]  64 Kavitha J, Chang S Y, Chi Y, et al. In search of high-performance platinum(II) phosphorescent materials for the fabrication of red electroluminescent devices. Adv Funct Mater, 2005, 15: 223-229
[46]  65 Chang S Y, Kavitha J, Li S W, et al. Platinum(II) complexes with pyridyl azolate-based chelates:Synthesis, structural characterization, and tuning of photo- and electrophosphorescence. Inorg Chem, 2006, 45: 137-146
[47]  66 Chang S Y, Chen J L, Chi Y, et al. Blue-emitting platinum(II) complexes bearing both pyridylpyrazolate chelate and bridging pyrazolate ligands: Synthesis, structures, and photophysical properties. Inorg Chem, 2007, 46: 11202-11212
[48]  67 Zhou G J, Wong W Y, Yao B, et al. Multifunctional metallophosphors with anti-triplet-triplet annihilation properties for solution-processable electroluminescent devices. J Mater Chem, 2008, 18: 1799-1809
[49]  68 Velusamy M, Chen C H, Wen Y S, et al. Cyclometalated Platinum(II) complexes of lepidine-based ligands as highly efficient electrophosphors. Organometallics, 2010, 29: 3912-3921
[50]  69 Zhao X H, Xie G H, Liu Z D, et al. A 3-dimensional spiro-functionalized platinum(II) complex to suppress intermolecular p-p and Pt…Pt supramolecular interactions for a high-performance electrophosphorescent device. Chem Commun, 2012, 48: 3854-3856
[51]  70 Xie L H, Hou X Y, Tang C, et al. Novel H-shaped persistent architecture based on a dispiro building block system. Org Lett, 2006, 8: 1363-1366
[52]  71 Ou C J, Lei Z F, Sun M L, et al. Dumbbell effects of solution-processed pyrene-based organic semiconductors on electronic structure, morphology and electroluminescence. Synth Met, 2015, 200: 135-142
[53]  72 Chu Z Z, Wang D, Zhang C, et al. Synthesis of dendritic oligo-spiro(fluorene-9,9'-xanthene) derivatives with carbazole and fluorene pendants and their thermal, optical, and electroluminescent propertie. Macromol Rapid Commun, 2009, 30: 1745-1750
[54]  73 Chu Z Z, Wang D, Zhang C, et al. Synthesis and optoelectronic properties of blue-emitting star-burst oligomers based on triphenylamine and spiro(fluorene-9,9'-xanthene) (in Chinese). Acta Phys Chim Sin, 2012, 28: 2000-2007 [初增泽, 王丹, 张超, 等. 基于三苯胺和螺(芴-9,9'-氧杂蒽)的星射形蓝光寡聚材料的合成与光电性质. 物理化学学报, 2012, 28: 2000-
[55]  74 Lin Z Q, Liang J, Sun P J, et al. Spirocyclic aromatic hydrocarbon-based organic nanosheets for eco-friendly aqueous processed thin-film non-volatile memory devices. Adv Mater, 2013, 25: 3664-3669
[56]  75 Poriel C, Cocherel N, Rault Berthelot J, et al. Incorporation of spiroxanthene units in blue-emitting oligophenylene frameworks: A new molecular design for OLED applications. Chem Eur J, 2011, 17: 12631-12645
[57]  76 Pietraszkiewicz M, Maciejczyk M, Samuel I D W, et al. Highly photo- and electroluminescent 1,3-diketonate Eu(III) complexes with spiro-fluorene-xantphos dioxide ligands: Synthesis and properties. J Mater Chem C, 2013, 1: 8028-8032
[58]  77 Chu Z Z, Wang D, Zhang C, et al. Synthesis of spiro[fluorene-9,9'-xanthene] derivatives and their application as hole-transporting materials for organic light-emitting devices. Synth Met, 2012, 162: 614-620
[59]  78 Tang C W, Vanskyke S A. Organic electroluminescent diodes. Appl Phys Lett, 1987, 51: 913
[60]  28 Jeon S O, Lee H S, Jeon Y M, et al. Electroluminescent properties of spiro[fluorene-benzofluorene]-containing blue light emitting materials. Bull Korean Chem Soc, 2009, 30: 863-868
[61]  29 Jeon Y M, Kim J W, Lee C W, et al. Blue organic light-emitting diodes using novel spiro[fluorine-benzofluorene]-type host materials. Dyes Pigment, 2009, 83: 66-71
[62]  30 Kim J H, Jeon Y M, Jang J G, et al. Blue OLEDs utilizing spiro[fluorene-7,9'-benzofluorene]-type compounds as hosts and dopants. Bull Korean Chem Soc, 2009, 30: 647-652
[63]  31 Kim K S, Lee H S, Jeon Y M, et al. Blue light-emitting diodes from 2-(10-naphthylanthracene)-spiro[fluorine-7,9'-benzofluorene] host material. Dyes Pigment, 2009, 81: 174-179
[64]  32 Zhai L Y, Shukla R, Rathore R. Oxidative C-C bond formation (scholl reaction) with DDQ as an efficient and easily recyclable oxidant. Org Lett, 2009, 11: 3474-3477
[65]  33 Cheng X, Hou G H, Xie J H, et al. Synthesis and optical resolution of 9,9'-spirobifluorene-1,1'-diol. Org Lett, 2004, 6: 2381-2383
[66]  34 Cheng X, Zhu S F, Qiao X C, et al. A general synthetic route to chiral dihydroxy-9,9'-spirobifluorenes. Tetrahedron, 2006, 62: 8077-8082
[67]  35 Bischoff F, Adkins H. The condensation of diphenic anhydride with resorcinol. J Am Chem Soc, 1923, 45:1030-1033
[68]  36 Xie L H, Liu F, Tang C, et al. Unexpected one-pot method to synthesize spiro[fluorine-9,9'-xanthene] building blocks for blue-light-emitting materials. Org Lett, 2006, 8: 2787-2790
[69]  37 Xie L H, Chang Y Z, Gu J F, et al. Design of organic/polymeric p-semiconductors: The four-element principle (in Chinese). Acta Phys Chim Sin, 2011, 26: 1784-1794 [解令海, 常永正, 顾菊芬, 等. 有机/聚合物p半导体的四元设计原理. 物理化学学报, 2011, 26: 1784-
[70]  38 Pankratov V A, Korshak V V, Vinogradova S V. Synthesis of polyarylates of 2,7-dihydroxyxanthene-9,9'-spiropluoren. Russ Chem Bull, 1965, 14: 1256-1257
[71]  39 Tseng Y H, Shih P I, Chien C H, et al. Stable organic blue-light-emitting devices prepared from poly[spiro(fluorene-9,9'-xanthene)]. Macromolecules, 2005, 38: 10055-10060
[72]  40 Vak D J, Shin S J, Yum J H, et al. Blue electroluminescence from spiro-configured polyfluorene derivatives with hetero-atoms. J Lumines, 2005, 115: 109-116
[73]  41 Hatano Y. The chemistry of fluoran leuco dyes. In: Muthyala R, eds. Chemistry and Applications of Leuco Dyes. New York: Plenum Press, 1997. 159-204
[74]  42 Yang H W, Takrouri K, Chorev M. Insight into acid driven formation of spiro-[oxindole]xanthenes from isatin and phenols. Curr Org Chem, 2012, 16: 1581-1593
[75]  43 Park G, Park E M, Ra C S. H-bonding controls the regio-selectivities on the acid-catalyzed reaction of fluorenone with phenol derivatives. Bull Korean Chem Soc, 2010, 31: 1837-1838
[76]  44 Timothy M, Swager E L. An efficient one-pot synthesis of spiro[fluorene-9,9'-xanthene]. Synfacts, 2006, 2006: 0904
[77]  45 Mc F S L, Coumont L S, Piercey D G, et al. “One-pot” synthesis of a thermally stable blue emitter: Poly[spiro(fluorene-9, 9'-(2'-phenoxyxanthene)]. Macromolecules, 2008, 41: 7780-7782
[78]  46 Chen M Z, You Y Z, Zhang Y, et al. Synthesis and properties of spiro[dibenzo[a, j]xanthene-14,9'-fluorene] (in Chinese). Chem J Chin Univ, 2014, 35: 63-67 [陈木子, 尤永芝, 张勇, 等. 螺[二苯并[a,j]氧杂蒽-14,9'-芴]的合成及性质. 高等学校化学学报, 2014, 35: 63-
[79]  79 Baldo M A, O’Brien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998, 395: 151-154
[80]  80 Uoyama H, Goushi K, Shizu K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012, 492: 234-240
[81]  81 Moorthy J N, Natarajan P, Venkatakrishnan P, et al. Steric inhibition of p-stacking: 1,3,6,8-Tetraarylpyrenes as efficient blue emitters in organic light emitting diodes (OLEDs). Org Lett, 2007, 9: 5215-5218
[82]  82 Yang C H, Guo T F, Sun I W. Highly efficient greenish blue-emitting organic diodes based on pyrene derivatives. J Lumin, 2007, 124: 93-98
[83]  83 Zhao Z J, Xu X J, Wang F, et al. Synthesis and characterization of light-emitting materials composed of carbazole, pyrene and fluorine. Synth Met, 2006, 156: 209-214
[84]  84 Tang C, Liu F, Xia Y J, et al. Fluorene-substituted pyrenes-novel pyrene derivatives as emitters in nondoped blue OLEDs. Org Electron, 2006, 7: 155-162
[85]  85 Xiao L X, Chen Z J, Qu B, et al. Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv Mater, 2011, 23: 926-952
[86]  86 Tao Y Y, Yang C L, Qin J G. Organic host materials for phosphorescent organic light-emitting diodes. Chem Soc Rev, 2011, 40: 2943-2970
[87]  87 Muller C D, Falcou A, Reckefuss N, et al. Multi-colour organic light-emitting displays by solution processing. Nature, 2003, 421: 829-833
[88]  88 Kim H, Byun Y, Das R R, et al. Small molecule based and solution processed highly efficient red electrophosphorescent organic light emitting devices. Appl Phys Lett, 2007, 91: 3512-3515
[89]  89 You J D, Tseng S R, Meng H F, et al. All-solution-processed blue small molecular organic light-emitting diodes with multilayer device structure. Org Electron, 2009, 10: 1610-1614
[90]  90 Duan L, Hou L D, Lee T W, et al. Solution processable small molecules for organic light-emitting diodes. J Mater Chem, 2010, 20: 6392-6407
[91]  91 Jou J H, Wang W B, Chen S Z, et al. High-efficiency blue organic light-emitting diodes using a 3,5-di(9H-carbazol-9-yl)tetraphenylsilane host via a solution-process. J Mater Chem, 2010, 20: 8411-8416
[92]  92 Zhang M, Xue S, Dong W, et al. Highly-efficient solution-processed OLEDs based on new bipolar emitters. Chem Commun, 2010, 46: 3923-3925
[93]  93 Li Y, Li A Y, Li B X, et al. Asymmetrically 4,7-disubstituted benzothiadiazoles as efficient non-doped solution-processable green fluorescent emitters. Org Lett, 2009, 11: 5318-5321
[94]  94 Mehes G, Goushi K, Potscavage W J, et al. Influence of host matrix on thermally activated delayed fluorescence: Effects on emission lifetime, photoluminescence quantum yield, and device performance. Org Electron, 2014, 15: 2027-2037
[95]  95 Ohkuma H, Nakagawa T, Shizu K, et al. Thermally activated delayed fluorescence from a spiro-diazafluorene derivative. Chem Lett, 2014, 43: 1017-1019
[96]  96 Mehes G, Nomura H, Zhang Q, et al. Enhanced electroluminescence efficiency in a spiro-acridine derivative through thermally activated delayed fluorescence. Angew Chem Int Ed, 2012, 51: 11311-11315
[97]  97 Xie L H, Yang S H, Lin J Y, et al. Fluorene-based macromolecular nanostructures and nanomaterials for organic (opto)electronics. Phil Trans R Soc A, 2013, 373: 20120337

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133