全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

北京丰中子束流装置及其应用前景

DOI: 10.1360/N972014-01402, PP. 1329-1335

Keywords: 丰中子放射性核束,在线同位素分离,炮弹碎裂,核能材料研究

Full-Text   Cite this paper   Add to My Lib

Abstract:

放射性核束物理和核天体物理是国际核物理研究的前沿,关键科学问题包括壳演化和新幻数、原子核的中子稳定极限(中子滴线)、超重新元素的合成、原子核的晕结构、新的衰变模式、宇宙中铁以上重元素的核合成机制等.为了解决这些关键科学问题,世界各国都投入大量人力物力建造可以用来产生放射性核束的大型实验装置.综述了国内外已有、在建和计划中的核物理不稳定核束装置情况,并介绍了新一代装置——北京丰中子束流装置(BISOL)的设想.BISOL装置计划采用反应堆和强流氘加速器双驱动源,综合在线同位素分离和炮弹碎裂两种成熟技术,可产生比国内外现有装置强度高1~2个量级的极端丰中子束流,同时通过建设强流氘加速器,提供国际最强的加速器中子源之一,以此为基础大力推进核能系统材料研究.

References

[1]  1 Eddington A S. The internal constitution of the stars. Nature, 1920, 106: 14-17
[2]  2 Tanihata I, Hamagaki H, Hashimoto O, et al. Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys Rev Lett, 1985, 55: 2676-2679
[3]  3 Li Z H, Liu W P, Bai X X, et al. First observation of neutron-proton halo structure of the 3.653 MeV 0+ state in 6Li via 1H(6He, 6Li)n reaction. Phys Lett B, 2002, 527: 50-54
[4]  4 Schmitt K T, Jones K L, Bey A, et al. Halo nucleus 11Be: A spectroscopic study via neutron transfer. Phys Rev Lett, 2012, 108: 192701
[5]  5 Yang Z H, Ye Y L, Li Z H, et al. Observation of enhanced monopole strength and clustering in 12Be. Phys Rev Lett, 2014, 112: 162501
[6]  6 Ozawa A, Kobayashi T, Suzuki T, et al. New magic number, N= 16, near the neutron drip line. Phys Rev Lett, 2000, 84: 5493-5495
[7]  7 Steppenbeck D, Takeuchi S, Aoi N, et al. Evidence for a new nuclear ‘magic number’from the level structure of 54Ca. Nature, 2013, 502: 207-210
[8]  8 Bethe H A. Energy production in stars. Phys Rev, 1939, 55: 434-456
[9]  9 Rolfs C E, Rodney W S. Cauldron in the Cosmos. Chicago: The University of Chicago Press, 1988
[10]  10 Lou J L, Li Z H, Ye Y L, et al. Observation of a new transition in the β-delayed neutron decay of 18N. Phys Rev C, 2007, 75: 057302
[11]  11 Su J, Liu W P, Shu N C, et al. Reexamining the β decay of 53,54Ni, 52,53Co, 51Fe, and 50Mn. Phys Rev C, 2013, 87: 024312
[12]  12 Burbidge E M, Burbidge G R, Fowler W A, et al. Synthesis of the elements of stars. Rev Mod Phys, 1957, 29: 547-650
[13]  13 Wallerstein G, Icko Iben Jr, Parker P, et al. Synthesis of the elements in stars: Forty years of progress. Rev Mod Phys, 1997, 69: 995-1084
[14]  14 Sobiezen Ski A, Gareev F A, Kalinkin B N. Closed shells for Z>82 and N>126 in a diffuse potential well. Phys Lett, 1966, 22: 500-502
[15]  15 Oganessian Y T, Utyonkoy V K, Lobanov Y V, et al. Experiments on the synthesis of element 115 in the reaction 243Am(48Ca,xn)291-x115. Phys Rev C, 2004, 69: 021601
[16]  16 Khuyagbaatar J, Yakushev A, Düllmann C E, et al. 48Ca+249Bk fusion reaction leading to element Z = 117: Long-lived α-decaying 270Db and discovery of 266Lr. Phys Rev Lett, 2014, 112: 172501
[17]  17 Tanihata I. Radioactive beam science, past, present and future. Nucl Instrum Methods B, 2008, 266: 4067-4073
[18]  18 Ravn H L, Bricault P, Ciavola G, et al. Comparison of radioactive ion beam intensities produced by means of thick targets bombarded with neutrons, protons and heavy ions. Nucl Instrum Methods B, 1994, 88: 441-461
[19]  19 Fukuda N, Kubo T, Ohnishi T, et al. Identification and separation of radioactive isotope beams by the BigRIPS separator at the RIKEN RI Beam Factory. Nucl Instrum Methods B, 2013, 317: 323-332
[20]  20 Geissel H, Weick H, Winkler M, et al. The super-FRS project at GSI. Nucl Instrum Methods B, 2003, 204: 71-85
[21]  21 Lewitowicz M. The SPIRAL2 project: Physics and challenges. Acta Phys Polo B, 2009, 40: 811-819
[22]  22 Thoennessen M. Plans for the facility for rare isotope beams. Nucl Phys A, 2010, 834: 688-693
[23]  23 Sun Z, Zhan W L, Guo Z Y, et al. RIBLL, the radioactive ion beam line in Lanzhou. Nucl Instrum Methods A, 2003, 503: 496-503
[24]  24 Bai X X, Liu W P, Qin J C, et al. A facility for production and utilization of radioactive beams. Nucl Phys A, 1995, 588: 273-276
[25]  25 Xia J W, Zhan W L, Wei B W, et al. The heavy ion cooler-storage-ring project (HIRFL-CSR) at Lanzhou. Nucl Instrum Methods A, 2002, 488: 11-25
[26]  26 Zhan W L, Xia J W, Zhao H W, et al. HIRFL today. Nucl Phys A, 2008, 805: 533-540
[27]  27 Zhang T J, Li Z G, Yin Z G, et al. Design & construction status of CYCIAE-100, a 100 MeV H-cyclotron for RIB production. Nucl Instrum Methods B, 2008, 266: 4117-4122
[28]  28 Liu W P, Li Z H, Bai X X, et al. BRIF and CARIF progress. Sci China Phys Mech Astron, 2010, 53: 586-590
[29]  29 Yang J C, Xia J W, Xiao G Q, et al. High intensity heavy ion accelerator facility (HIAF) in China. Nucl Instrum Methods B, 2013, 317: 263-265
[30]  30 Liu W P. The prospects for accelerator-based nuclear physics facilities (in Chinese). Physics, 2014, 43: 150-156 [柳卫平. 加速器核物理大科学平台现状及展望. 物理, 2014, 43: 150-
[31]  31 Cui B Q, Gao Y, Ge Y C, et al. The Beijing ISOL initial conceptual design report. Nucl Instrum Methods B, 2013, 317: 257-262
[32]  32 Kester O, Habsa D, Gro? M, et al. RNB production with thermal neutrons. Nucl Phys A, 2002, 701: 71-77
[33]  33 Moslang A, Wiss T. Materials for energy: From fission towards fusion. Nat Mater, 2006, 5: 679-680
[34]  34 Zinkle S J. Fusion materials science: Overview of challenges and recent progress. Phys Plasmas, 2005, 12: 058101
[35]  35 Mosnier A. The IFMIF 5 MW Linacs. In: Proceedings of LINAC08, Victoria, Canada, 2008. 1114-1118

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133