全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

碳纳米豆荚内C60分子振荡行为的模拟

DOI: 10.1360/N972014-01270, PP. 1414-1419

Keywords: 振荡,碳纳米管,C60分子,碳纳米豆荚,分子动力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用AIREBO势函数、L-J势函数结合分子动力学模拟方法,对碳纳米豆荚中C60分子的振荡行为进行了模拟.分别讨论了环境温度、碳管管壁层数及C60分子填充个数对碳纳米豆荚振荡性能的影响.研究表明,C60分子沿着碳管轴向做阻尼振荡运动.随着温度升高,振荡频率逐渐减小,振幅衰减速度加快.增加碳管管壁层数使C60分子与管壁间的范德瓦耳斯力增大而滑动摩擦力减小,因而有益于形成稳定振荡.由于C60分子间受力随距离变化以及分子间存在碰撞,增加C60分子填充个数并不能观察到稳定振荡.

References

[1]  1 Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58
[2]  2 Lu J P. Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett, 1997, 79: 1297-1300
[3]  3 Zheng G H, Chen Z B, Li S Z, et al. Quantum mechanical investigation of field emission mechanism of a micrometer-long single-walled carbon nanotube. Phys Rev Lett, 2004, 92: 106803
[4]  4 Pop E, Mann D, Wang Q, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett, 2006, 6: 96-100
[5]  5 Smith B W, Monthioux M, Luzzi D E. Encapsulated C60 in carbon nanotubes. Nature, 1998, 396: 323-324
[6]  6 Okada S, Saito S, Oshiyama A. Energetics and electronic structures of carbon nanotubes encapsulating C60. Phys Rev Lett, 2001, 86: 3835-3838
[7]  7 Liu P, Zhang Y W, Lu C. Oscillatory behavior of C60-nanotube oscillators: A molecular-dynamics study. J Appl Phys, 2005, 97: 094313
[8]  8 Cox B J, Thamwattana N, Hill J M. Mechanics of atoms and fullerenes in single-walled carbon nanotubes. I. Acceptance and suction energies. Proc R Soc A, 2007, 463: 461-476
[9]  9 Cox B J, Thamwattana N, Hill J M. Mechanics of atoms and fullerenes in single-walled carbon nanotubes. II. Oscillatory behavior. Proc R Soc A, 2007, 463: 477-494
[10]  10 Song H Y, Zha X W. Molecular dynamics study of effects of radius and defect on oscillatory behaviors of C60-nanotube oscillators. Phys Lett A, 2009, 373: 1058-1061
[11]  11 Srikhaetai K, Chayantrakom K, Baowan D. Oscillatory behaviour and numerical simulation of a C60 fullerene in single-walled carbon nanotubes. Southeast-Asian J Sci, 2013, 2: 52-62
[12]  12 Ansari R, Sadeghi F, Motevalli B. A comprehensive study on the oscillation frequency of spherical fullerenes in carbon nanotubes under different system parameters. Commun Nonlinear Sci, 2013, 18: 769-784
[13]  13 Stuart S J, Tutein A B, Harrison J A. A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys, 2000, 112: 6472-6486
[14]  14 Rafizadeh H A. An analytical-potential approach to the lattice dynamics of graphite. Physica, 1974, 74: 135-150
[15]  15 Girifalco L A, Hodak M, Lee R S. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B, 2000, 62: 13103
[16]  16 Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117: 1-9
[17]  17 Shinoda W, Devane R, Klein M L. Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants. Mol Simulat, 2007, 33: 27-36
[18]  18 Frenkel D, Smit B. Understanding Molecular Simulationfrom Algorithms to Applications. San Diego: Academic Press, 2002
[19]  19 Wang X H, Bi K D, Wang Y J, et al. Simulation of the energy dissipation mechanisms in multiwall carbon nanotube oscillators with molecular dynamics (in Chinese). Chin J Sens Actuators, 2006, 19: 1626-1634 [王晓辉, 比克东, 王玉娟, 等. 多壁纳米碳管振子及其能量耗散的分子动力学模拟. 传感技术学报, 2006, 19: 1626-
[20]  20 Servantie J, Gaspard P. Methods of calculation of a friction coefficient: Application to nanotubes. Phys Rev Lett, 2003, 91: 1855031
[21]  21 Servantie J, Gaspard P. Translational dynamics and friction in double-walled carbon nanotubes. Phys Rev B, 2006, 73: 1254281
[22]  22 Servantie J, Gaspard P. Rotational dynamics and friction in double-walled carbon nanotubes. Phys Rev Lett, 2006, 97: 1861061

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133