全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

非牛顿幂律流体电渗微混合的数值模拟

DOI: 10.1360/N972015-00088, PP. 1401-1407

Keywords: 电渗微混合,幂律流体,异构微通道,表观黏度,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

微混合是芯片实验室中实现快速反应、分析和检测的一个重要前提.为了研究非牛顿幂律流体的微混合特性,应用有限元法对壁面存在异构zeta电势的平板微通道内流动进行了数值模拟.研究结果表明,幂律流体表观黏度的差异对动电现象具有不同的效果,对混合效率有显著的影响.流体的剪切变稀特性有增强动电现象的趋势,剪切变稠特性则相反.当流体幂律指数减小时,可以获得更好的混合效果.相对牛顿流体和膨胀性流体而言,假塑性流体采用电渗微混合具有更高的效率和实用性.通过对外加电场和zeta电势的调控可以改善混合性能,假塑性流体比牛顿流体和膨胀性流体对参数更敏感.

References

[1]  2 Li Q, Xu J L, Mao W B, et al. Recent progress in micromixers (in Chinese). Chem Ind Eng Prog, 2009, 28: 922-926 [李倩, 徐进良, 毛文彬, 等. 微混合器的研究进展. 化工进展, 2009, 28: 922-
[2]  3 Wu Z, Nguyen N T, Huang X Y. Non-linear diffusive mixing in microchannels: Theory and experiments. J Micromech Microeng, 2004, 14: 604-611
[3]  4 Stroock A D, Dertinger S K W, Ajdari A, et al. Chaotic mixer for microchannels. Science, 2002, 295: 647-651
[4]  5 Yang D Y. Numerical analysis of micro-mixing in rough microchannels. Adv Mater Res, 2011, 189-193: 1452-1455
[5]  6 Wang W T, Liu Z, Shao T, et al. μ-LIF visualization and LBM simulation of mixing behavior inside droplets in microchannels (in Chinese). Chin J Chem Eng, 2012, 63: 375-381 [王文坦, 刘喆, 邵婷, 等. 微通道中液滴内部混合过程的μ-LIF可视化和LBM模拟. 化工学报, 2012, 63: 375-
[6]  7 Hardt S, Drese K S, Hessel V, et al. Passive micromixers for applications in the microreactor and μTAS fields. Microfluid Nanofluid, 2005, 1: 108-118
[7]  8 Johnson T J, Ross D, Locascio L E. Rapid microfluidic mixing. Anal Chem, 2002, 74: 45-51
[8]  9 Neophytos L, Antonio R, George E G. Configurable AC electroosmotic pumping and mixing. Microelectron Eng, 2012, 90: 47-50
[9]  10 Oddy M H, Santiago J G, Mikkelsen J C. Electrokinetic instability micromixing. Anal Chem, 2001, 73: 5822-5832
[10]  11 Cho C C, Chen C L, Chen C K. Mixing enhancement in crisscross micromixer using aperiodic electrokinetic perturbing flows. Int J Heat Mass Tran, 2012, 55: 2926-2933
[11]  12 Wang J, Wang M, Li Z. Lattice Boltzmann simulations of mixing enhancement by the electro-osmotic flow in microchannels. Mod Phys Lett B, 2005, 19: 1515-1518
[12]  13 Wang J, Wang M, Li Z. Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels. J Colloid Interf Sci, 2006, 296: 729-736
[13]  14 Tang G H, Wang F F, Bi C, et al. Numerical study of electroosmotic mixing enhancement (in Chinese). J Eng Thermophys, 2010, 31: 1721-1723 [唐桂华, 王斐斐, 毕成, 等. 微尺度电渗混合强化的数值研究. 工程热物理学报, 2010, 31: 1721-
[14]  15 Zhang R B, Yang N, Zhao Y Q, et al. Electrokinetically driven flow mixing in micro scale based on chaotic anti-control method (in Chinese). Chin Sci Bull, 2013, 58: 1057-1062 [张荣标, 杨宁, 赵雨琦, 等. 微尺度电动混合混沌反控制方法. 科学通报, 2013, 58: 1057-
[15]  16 Alizadeh A, Wang J K, Pooyan S, et al. Numerical study of active control of mixing in electro-osmotic flows by temperature difference using lattice Boltzmann methods. J Colloid InterfSci, 2013, 407: 546-555
[16]  17 Alizadeh A, Zhang L, Wang M. Mixing enhancement of low-Reynolds electro-osmotic flows in microchannels with temperature-patterned walls. J Colloid InterfSci, 2014, 431: 50-63
[17]  18 Jain M, Nandakumar K. Optimal patterning of heterogeneous surface charge for improved electrokinetic micromixing. Comput Chem Eng, 2013, 49: 18-24
[18]  19 Nayak A K. Analysis of mixing for electroosmotic flow in micro/nano channels with heterogeneous surface potential. Int J Heat Mass Tran, 2014, 75: 135-144
[19]  20 Zhao C, Yang C. Electrokinetics of non-Newtonian fluids: A review. Adv Colloid Interfac, 2013, 201-202: 94-108
[20]  21 Afzal A, Kim K Y. Flow and mixing analysis of non-Newtonian fluids in straight and serpentine microchannels. Chem Eng Sci, 2014, 116: 263-274
[21]  22 Hadigol M, Nosrati R, Nourbakhsh A, et al. Numerical study of electroosmotic micromixing of non-Newtonian fluids. J Non-Newton Fluid Mech, 2011, 166: 965-971
[22]  23 Chen S, He X, Wang M, et al. Electroosmosis of non-Newtonian fluid in microporousmedia. J Colloid Inter Sci, 2014, 436: 186-193
[23]  24 Schasfoort R B M, Schlautmann S, Hendrikse J, et al. Field-effect flow control for microfabricated fluidic networks. Science, 1999, 286: 942-945
[24]  25 Masliyah J H, Bhattacharjee S. Electrokinetic and Colloid Transport Phenomena. New Jersey: John Wiley & Sons, Inc., 2006
[25]  26 Li Z H, Wu J K, Hu G Q, et al. Fluid Flow in Microfluidic Chips (in Chinese). Beijing: Science Press, 2012 [李战华, 吴健康, 胡国庆, 等.微流控芯片中的流体流动.北京: 科学出版社,
[26]  27 Malkin A A. Rheology Fundamentals. Toronto: ChemTec Publishing, 1994
[27]  28 Erickson D, Li D. Influence of surface heterogeneity on electrokinetically driven microfluidic mixing. Langmuir, 2002, 18: 1883-1892
[28]  29 Sánchez S, Arcos J, Bautista O, et al. Joule heating effect on a purely electroosmotic flow of non-Newtonian fluids in a slit microchannel. J Non-Newton Fluid, 2013, 192: 1-9
[29]  1 Li D Q. Encyclopedia of Microfluidics and Nanofluidics. New York: Springer-Verlag New York Inc, 2008

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133