67 Ignatyev I A, van Doorslaer C, Mertens P G N, et al. Reductive splitting of cellulose in the ionic liquid 1-butyl-3-methylimidazolium chloride. ChemSusChem, 2010, 3: 91-96
[2]
66 Xie X, Han J, Wang H, et al. Selective conversion of microcrystalline cellulose into hexitols over a Ru/[Bmim]3PW12O40 catalyst under mild conditions. Catal Today, 2014, 233: 70-76
[3]
49 Polaert I, Felix M C, Fornasero M, et al. A greener process for isosorbide production: Kinetic study of the catalytic dehydration of pure sorbitol under microwave. Chem Eng J, 2013, 222: 228-239
[4]
50 Ahmed I, Khan N A, Mishra D K, et al. Liquid-phase dehydration of sorbitol to isosorbide using sulfated titania as a solid acid catalyst. Chem Eng Sci, 2013, 93: 91-95
[5]
51 Morita Y, Furusato S, Takagaki A, et al. Intercalation-controlled cyclodehydration of Sorbitol in water over layered-niobium-molybdate solid acid. ChemSusChem. 2014, 7: 748-752
[6]
52 Yamaguchi A, Hiyoshi N, Sato O, et al. Sorbitol dehydration in high temperature liquid water. Green Chem, 2011, 13: 873-881
[7]
53 Khan N A, Mishra D K, Hwang J S, et al. Liquid-phase dehydration of sorbitol under microwave irradiation in the presence of acidic resin catalysts. Res Chem Intermediat, 2011, 37: 1231-1238
[8]
54 Liang G, Wu C, He L, et al. Selective conversion of concentrated microcrystalline cellulose to isosorbide over Ru/C catalyst. Green Chem, 2011, 13: 839-842
[9]
55 Op de Beeck B, Geboers J, van de Vyver S, et al. Conversion of (Ligno) cellulose feeds to Isosorbide with heteropoly acids and Ru on Carbon. ChemSusChem, 2013, 6: 199-208
[10]
56 Xi J X, Zhang Y, Ding D Q, et al. Catalytic production of isosorbide from cellulose over mesoporous niobium phosphate-based heterogeneous catalysts via a sequential process. Appl Catal A, 2014, 469: 108-115
[11]
57 Sun P, Long X, He H, et al. Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate. ChemSusChem, 2013, 6: 2190-2197
[12]
58 Zhang Y, Wang A, Zhang T. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol. Chem Commun, 2010, 46: 862-864
[13]
59 Zheng M Y, Wang A Q, Ji N, et al. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol. ChemSusChem, 2010, 3: 63-66
[14]
60 Tai Z, Zhang J, Wang A, et al. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose. Chem Commun, 2012, 48: 7052-7054
[15]
61 Tai Z, Zhang J, Wang A, et al. Catalytic conversion of cellulose to ethylene glycol over a low-cost binary catalyst of raney Ni and tungstic acid. ChemSusChem, 2013, 6: 652-658
[16]
62 Li C, Zheng M, Wang A, et al. One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: Simultaneous conversion of cellulose, hemicellulose and lignin. Energ Environ Sci, 2012, 5: 6383-6390
[17]
63 Pang J, Zheng M, Wang A, et al. Catalytic hydrogenation of corn stalk to ethylene glycol and 1,2-propylene glycol. Ind Eng Chem Res, 2011, 50: 6601-6608
[18]
64 Xiao Z, Jin S, Pang M, et al. Conversion of highly concentrated cellulose to 1,2-propanediol and ethylene glycol over highly efficient CuCr catalysts. Green Chem, 2013, 15: 891-895
[19]
65 Xi J, Ding D, Shao Y, et al. Production of ethylene glycol and its monoether derivative from cellulose. ACS Sust Chem Eng, 2014, 2: 2355-2362
[20]
66 Sun Y G, Ma Y, Wang Z, et al. Evaluating and optimizing pretreatment technique for catalytic hydrogenolysis conversion of corn stalk into polyol. Bioresour Technol, 2014, 158: 307-312
[21]
1 Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature, 2012, 488: 294-303
[22]
2 Sheldon R A. Green and sustainable manufacture of chemicals from biomass: State of the art. Green Chem, 2014, 16: 950-963
[23]
3 Ragauskas A J, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials. Science, 2006, 311: 484-489
[24]
4 Geboers J A, van de Vyver S, Ooms R, et al. Chemocatalytic conversion of cellulose: Opportunities, advances and pitfalls. Catal Sci Technol, 2011, 1: 714-726
[25]
5 Caes B R, Palte M J, Raines R T. Organocatalytic conversion of cellulose into a platform chemical. Chem Sci, 2013, 4: 196-199
[26]
6 Gallezot P. Conversion of biomass to selected chemical products. Chem Soc Rev, 2012, 41: 1538-1558
[27]
7 Zhang J, Li J B, Wu S B, et al. Advances in the catalytic production and utilization of Sorbitol. Ind Eng Chem Res, 2013, 52: 11799-11815
[28]
8 Liu C, Wang H, Karim A M, et al. Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev, 2014, 43: 7594-7623
[29]
9 Rose M, Palkovits R. Isosorbide as a renewable platform chemical for versatile applications—Quo vadis? ChemSusChem, 2012, 5: 167-176
[30]
10 Yue H, Zhao Y, Ma X, et al. Ethylene glycol: Properties, synthesis, and applications. Chem Soc Rev, 2012, 41: 4218-4244
[31]
11 Xuan J, Leung M K H, Leung D Y C, et al. A review of biomass-derived fuel processors for fuel cell systems. Renew Sust Energy Rev, 2009, 13: 1301-1313
[32]
12 Cortright R D, Davda R R, Dumesic J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature, 2002, 418: 964-967
[33]
13 Hu L, Zhao G, Hao W, et al. Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Adv, 2012, 2: 11184
[34]
14 Bozell J J, Petersen G R. Technology development for the production of biobased products from biorefinery carbohydrates—The US Department of Energy's "top 10" revisited. Green Chem, 2010, 12: 539-554
[35]
15 Kobayashi H, Fukuoka A. Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chem, 2013, 15: 1740-1763
[36]
16 Dhepe P L, Fukuoka A. Cellulose conversion under heterogeneous catalysis. ChemSusChem, 2008, 1: 969-975
[37]
17 Maki-Arvela P, Salmi T, Holmbom B, et al. Synthesis of sugars by hydrolysis of hemicelluloses—A review. Chem Rev, 2011, 111: 5638-5666
[38]
18 Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chem Rev, 2007, 107: 2411-2502
[39]
19 Van de Vyver S, Geboers J, Jacobs P A, et al. Recent advances in the catalytic conversion of cellulose. ChemCatChem, 2011, 3: 82-94
[40]
20 St?cker M. Biofuels and biomass-to-liquid fuels in the biorefinery: Catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed, 2008, 47: 9200-9211
[41]
21 Chheda J N, Huber G W, Dumesic J A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed, 2007, 46: 7164-7183
[42]
22 Climent M J, Corma A, Iborra S. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem Rev, 2010, 111: 1072-1133
[43]
23 Kobayashi H, Komanoya T, Guha S K, et al. Conversion of cellulose into renewable chemicals by supported metal catalysis. Appl Catal A: Gen, 2011, 409-410: 13-20
[44]
24 de Almeida R M, Li J, Nederlof C, et al. Cellulose conversion to isosorbide in molten salt hydrate media. ChemSusChem, 2010, 3: 325-328
[45]
25 Ji N, Zhang T, Zheng M, et al. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem Int Ed, 2008, 120: 8638-8641
[46]
26 Liu Y, Luo C, Liu H C. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Angew Chem Int Ed, 2012, 51: 3249-3253
[47]
27 Fukuoka A, Dhepe P L. Catalytic conversion of cellulose into sugar alcohols. Angew Chem Int Ed, 2006, 45: 5161-5163
[48]
28 Deng T, Liu H. Promoting effect of SnOx on selective conversion of cellulose to polyols over bimetallic Pt-SnOx/Al2O3 catalysts. Green Chem, 2013, 15: 116-124
[49]
29 Yu Y, Wu H W. Effect of ball Milling on the hydrolysis of microcrystalline cellulose in hot-compressed water. AIChE J, 2011, 57: 793-800
[50]
30 Kobayashi H, Hosaka Y, Hara K, et al. Control of selectivity, activity and durability of simple supported nickel catalysts for hydrolytic hydrogenation of cellulose. Green Chem, 2013, 16: 637-644
[51]
31 Yang P, Kobayashi H, Hara K, et al. Phase change of nickel phosphide catalysts in the conversion of cellulose into sorbitol. ChemSusChem, 2012, 5: 920-926
[52]
32 Luo C, Wang S A, Liu H C. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. Angew Chem Int Ed, 2007, 46: 7636-7639
[53]
33 van de Vyver S, Geboers J, Dusselier M, et al. Selective bifunctional catalytic conversion of cellulose over reshaped Ni particles at the tip of carbon nanofibers. ChemSusChem, 2010, 3: 698-701
[54]
34 van de Vyver S, Geboers J, Dusselier M, et al. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose. ChemSusChem, 2012, 5: 1549-1558
[55]
35 Ding L N, Wang A Q, Zheng M Y, et al. Selective transformation of cellulose into sorbitol by using a bifunctional nickel phosphide catalyst. ChemSusChem, 2010, 3: 818-821
[56]
36 Pang J, Wang A, Zheng M, et al. Catalytic conversion of cellulose to hexitols with mesoporous carbon supported Ni-based bimetallic catalysts. Green Chem, 2012, 14: 614-617
[57]
37 Deng W, Liu M, Tan X, et al. Conversion of cellobiose into sorbitol in neutral water medium over carbon nanotube-supported ruthenium catalysts. J Catal, 2010, 271: 22-32
[58]
38 Liu M, Deng W, Zhang Q, et al. Polyoxometalate-supported ruthenium nanoparticles as bifunctional heterogeneous catalysts for the conversions of cellobiose and cellulose into sorbitol under mild conditions. Chem Commun, 2011, 47: 9717-9719
[59]
39 Liang G, Cheng H, Li W, et al. Selective conversion of microcrystalline cellulose into hexitols on nickel particles encapsulated within ZSM-5 zeolite. Green Chem, 2012, 14: 2146-2149
[60]
40 Liang G, He L, Arai M, et al. The Pt-enriched PtNi alloy surface and its excellent catalytic performance in hydrolytic hydrogenation of cellulose. ChemSusChem, 2014, 7: 1415-1421
[61]
41 Wang D, Niu W, Tan M, et al. Pt nanocatalysts supported on reduced graphene oxide for selective conversion of cellulose or cellobiose to sorbitol. ChemSusChem, 2014, 7: 1398-1406
[62]
42 Xi J X, Zhang Y, Xia Q N, et al. Direct conversion of cellulose into sorbitol with high yield by a novel mesoporous niobium phosphate supported Ruthenium bifunctional catalyst. Appl Catal A, 2013, 459: 52-58
[63]
43 Meine N, Rinaldi R, Schüth F. Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides. ChemSusChem, 2012, 5: 1449-1454
[64]
44 Shrotri A, Lambert L K, Tanksale A, et al. Mechanical depolymerisation of acidulated cellulose: Understanding the solubility of high molecular weight oligomers. Green Chem, 2013, 15: 2761-2768
[65]
45 Hilgert J, Meine N, Rinaldi R, et al. Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols. Energ Environ Sci, 2013, 6: 92-96
[66]
46 Khan N A, Mishra D K, Ahmed I, et al. Liquid-phase dehydration of sorbitol to isosorbide using sulfated zirconia as a solid acid catalyst. Appl Catal A, 2013, 452: 34-38
[67]
47 Xia J J, Yu D H, Hu Y Z, et al. Sulfated copper oxide: An efficient catalyst for dehydration of sorbitol to isosorbide. Catal Commun, 2011, 12: 544-547
[68]
48 Gu M G, Yu D H, Zhang H M, et al. Metal (IV) phosphates as solid catalysts for selective dehydration of Sorbitol to Isosorbide. Catal Lett, 2009, 133: 214-220