1 Klemm D, Heublein B, Fink H P, et al. Cellulose: Fascinating biopolymer and sustainable raw material. Angew Chem Int Ed, 2005, 44: 3358-3393
[2]
2 Kang H L, Liu R G, Huang Y. Cellulose derivatives and graft copolymers as blocks for functional materials. Polym Int, 2013, 62: 338-344
[3]
3 Edgar K J, Buchanan C M, Debenham J S, et al. Advances in cellulose ester performance and application. Prog Polym Sci, 2001, 26: 1605-1688
[4]
4 El Seoud O A, Heinze T. Organic esters of cellulose: New perspectives for old polymers. Adv Polym Sci, 2005, 186: 103-149
[5]
5 Heinze T, Liebert T, Koschella A. Esterification of Polysaccharides. Berlin Heidelberg: Springer-Verlag, 2006. 41-116
[6]
6 Cao Y, Wu J, Zhang J, et al. Room temperature ionic liquids (RTILs): A new and versatile platform for cellulose processing and derivatization. Chem Eng J, 2009, 147: 13-21
[7]
7 Pinkert A, Marsh K N, Pang S S, et al. Ionic liquids and their interaction with cellulose. Chem Rev, 2009, 109: 6712-6728
[8]
8 Gericke M, Fardim P, Heinze T. Ionic liquids—Promising but challenging solvents for homogeneous derivatization of cellulose. Molecules, 2012, 17: 7458-7502
[9]
9 Wu J, Zhang J, Zhang H, et al. Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules, 2004, 5: 266-268
[10]
10 Cao Y, Li H Q, Zhang Y, et al. Synthesis of cellulose acetates with low degree of substituent and their water solubility. Chem J Chin Univ, 2008, 29: 2115-2117
[11]
11 Heinze T, Schwikal K, Barthel S. Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci, 2005, 5: 520-525
[12]
12 Barthel S, Heinze T. Acylation and carbanilation of cellulose in ionic liquids. Green Chem, 2006, 8: 301-306
[13]
13 Schlufter K, Schmauder H P, Dorn S, et al. Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol Rapid Commun, 2006, 27: 1670-1676
[14]
14 Heinze T, Dorn S, Sch?bitz M, et al. Properties and applications of cellulose acetate. Macromol Symp, 2008, 262: 8-22
[15]
15 Dorn S, Pfeifer A, Schlufter K, et al. Synthesis of water-soluble cellulose esters applying carboxylic acid imidazolides. Polym Bull, 2010, 9: 845-854
[16]
16 Zarth C S P, Koschella A, Pfeifer A, et al. Synthesis and characterization of novel amino cellulose esters. Cellulose, 2011, 18: 1315-1325
[17]
17 King A W T, Jalom?ki J, Granstr?m M, et al. A new method for rapid degree of substitution and purity determination of chloroform-soluble cellulose esters, using 31P NMR. Anal Methods, 2010, 2: 1499-1505
[18]
18 Huang K, Xia J L, Li M, et al. Homogeneous synthesis of cellulose stearates with different degrees of substitution in ionic liquid 1-butyl-3-methylimidazolium chloride. Carbohydr Polym, 2011, 83: 1631-1635
[19]
19 Luan Y H, Zhang J M, Zhan M S, et al. Highly efficient propionylation and butyralation of cellulose in an ionic liquid catalyzed by 4-dimethylminopyridine. Carbohydr Polym, 2013, 92: 307-311
[20]
20 Yang Y L, Xie H B, Liu E H. Acylation of cellulose in reversible ionic liquids. Green Chem, 2014, 16: 3018-3023
[21]
21 Cao Y, Li H Q, Zhang J. Homogeneous synthesis and characterization of cellulose acetate butyrate (CAB) in 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid. Ind Eng Chem Res, 2011, 50: 7808-7814
[22]
22 Chen J, Zhang J M, Feng Y, et al. Effect of molecular structure on the gas permeability of cellulose aliphatate esters. Chin J Polym Sci, 2014, 32: 1-8
[23]
23 Chen J, Zhang J M, Feng Y, et al. Synthesis, characterization, and gas permeabilities of cellulose derivatives containing adamantane groups. J Membr Sci, 2014, 469: 507-514
[24]
24 Xiao P, Zhang J M, Feng Y, et al. Synthesis, characterization and properties of novel cellulose derivatives containing phosphorus: Cellulose diphenyl phosphate and its mixed esters. Cellulose, 2014, 21: 2369-2378
[25]
25 Meng T, Gao X, Zhang J, et al. Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose. Polymer, 2009, 50: 447-454
[26]
26 Wang Z K, Zhang Y Q, Jiang F, et al. Synthesis and characterization of designed cellulose-graft-polyisoprene copolymers. Polym Chem, 2014, 5: 3379-3388
[27]
27 Supeno S, Daik R, El-Sheikh S M. Synthesis and characterization of designed cellulose-graft-polyisoprene copolymers. BioResources, 2014, 9: 1267-1275
[28]
28 Xin T T, Yuan T Q, Xiao S, et al. Synthesis of cellulose-graft-poly(methyl methacrylate) via homogeneous ATRP. BioResources, 2011, 6: 2941-2953
[29]
29 Hufendiek A, Trouillet V, Meier M A R, et al. Temperature responsive cellulose-graft-copolymers via cellulose functionalization in an ionic liquid and RAFT polymerization. Biomacromolecules, 2014, 15: 2563-2572
[30]
30 Lin C X, Zhan H Y, Liu M H, et al. Preparation of cellulose graft poly(methyl methacrylate) copolymers by atom transfer radical polymerization in an ionic liquid. Carbohydr Polym, 2009, 78: 432-438
[31]
31 Chen J, Zhang J M, Zhang J. Cellulose ester/ionic liquids composite membranes for CO2-favored permeation. Chem J Chin Univ, 2013, 34: 2037-2039
[32]
32 Bagheri M, Rodríguez H, Swatloski R P, et al. Ionic liquid-based preparation of cellulose dendrimer films as solid supports for enzyme immobilization. Biomacromolecules, 2008, 9: 381-387
[33]
33 Xu X T, Duan W G, Huang M, et al. Synthesis of cellulose dehydroabietate in ionic liquid [Bmim]Br. Carbohydr Res, 2011, 346: 2024-2027
[34]
34 Possidonio S, Fidale L C, El Seoud O A. Microwave-assisted derivatization of cellulose in an ionic liquid: An efficient, expedient synthesis of simple and mixed carboxylic esters. J Polym Sci Pt A Polym Chem, 2009, 48: 134-143
[35]
35 Fidale L C, Possidonio S, El Seoud O A. Application of 1-allyl-3-(1-butyl)imidazolium chloride in the synthesis of cellulose esters: Properties of the ionic liquid, and comparison with other solvents. Macromol Biosci, 2009, 9: 813-821
[36]
36 Zhao H, Baker G A, Song Z Y, et al. Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem, 2008, 10: 696-705
[37]
46 Elschner T, K?tteritzsch M, Heinze T. Synthesis of cellulose tricarbonates in 1-butyl-3-methylimidazolium chloride/pyridine. Macromol Biosci, 2014, 14: 161-165
[38]
47 Granstr?m M, Kavakka J, King A, et al. Tosylation and acylation of cellulose in 1-allyl-3-methylimidazolium chloride. Cellulose, 2008, 15: 481-488
[39]
48 Gericke M, Liebert T, Heinze T. Interaction of ionic liquids with polysaccharides, 8. Synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromol Biosci, 2009, 9: 343-353
[40]
49 Gericke M, Liebert T, Heinze T. Polyelectrolyte synthesis and in situ complex formation in ionic liquids. J Am Chem Soc, 2009, 131: 13220-13221
[41]
50 Wang Z M, Xiao K J, Li L, et al. Molecular weight-dependent anticoagulation activity of sulfated cellulose derivatives. Cellulose, 2010, 17: 953-961
[42]
51 Vo H T, Kim Y J, Jeon E H, et al. Ionic-liquid-derived, water-soluble ionic cellulose. Chem Eur J, 2012, 18: 9019-9023
[43]
52 Cao Y, Wu J, Meng T, et al. Acetone-soluble cellulose acetates prepared by one-step homogeneous acetylation of cornhusk cellulose in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Carbohydr Polym, 2007, 69: 665-672
[44]
53 Cao Y, Li H Q, Zhang Y, et al. Structure and properties of novel regenerated cellulose films prepared from cornhusk cellulose in room temperature ionic liquids. J Appl Polym Sci, 2010, 116: 547-554
[45]
54 Hu J, Shao Y, Deng Y. Synthesis of cellulose carbamate in ionic liquid. Leather Chem, 2007, 24: 31-35
[46]
55 Liu C F, Sun R C, Zhang A P, et al. Structural and thermal characterization of sugarcane bagasse cellulose succinates prepared in ionic liquid. Polym Degrad Stabil, 2006, 91: 3040-3047
[47]
56 Liu C F, Sun R C, Zhang A P, et al. Preparation of sugarcane bagasse cellulosic phthalate using an ionic liquid as reaction medium. Carbohydr Polym, 2007, 68: 17-25
[48]
57 Liu C F, Sun R C, Zhang A P, et al. Homogeneous modification of sugarcane bagasse cellulose with succinic anhydride using a ionic liquid as reaction medium. Carbohydr Res, 2007, 342: 919-926
[49]
58 Liu C F, Sun R C, Zhang A P, et al. Preparation and characterization of phthalated cellulose derivatives in room-temperature ionic liquid without catalysts. J Agric Food Chem, 2007, 55: 2399-2406
[50]
59 Liu C F, Zhang A P, Li W Y, et al. Homogeneous modification of cellulose in ionic liquid with succinic anhydride using N-bromosuccinimide as a catalyst. J Agric Food Chem, 2009, 57: 1814-1820
[51]
60 Li W Y, Jin A X, Liu C F, et al. Homogeneous modification of cellulose with succinic anhydride in ionic liquid using 4-dimethylamino- pyridine as a catalyst. Carbohydr Polym, 2009, 78: 389-395
[52]
61 Liu C F, Zhang A P, Li W Y, et al. Succinoylation of cellulose catalyzed with iodine in ionic liquid. Ind Crop Prod, 2010, 31: 363-369
[53]
62 Li W Y, Wu L, Chen D, et al. Succinoylation of cellulose catalyzed with iodine in ionic liquid. BioResources, 2011, 6: 2375-2385
[54]
63 Wang Z M, Li L, Xiao K J, et al. Homogeneous sulfation of bagasse cellulose in an ionic liquid and anticoagulation activity. Biores Technol, 2009, 100: 1687-1690
[55]
64 Huang K L, Wang B, Cao Y, et al. Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid. J Agric Food Chem, 2011, 59: 5376-5381
[56]
65 Ma S, Xue X L, Yu S J, et al. High-intensity ultrasound irradiated modification of sugarcane bagasse cellulose in an ionic liquid. Ind Crop Prod, 2012, 35: 135-139
[57]
66 Wen J L, Sun Y C, Meng L Y, et al. Homogeneous lauroylation of ball-milled bamboo in ionic liquid for bio-based composites production Part I: Modification and characterization. Ind Crop Prod, 2011, 34: 1491-1501
[58]
67 Abbott A P, Bell T J, Handa S, et al. Cationic functionalisation of cellulose using a choline based ionic liquid analogue. Green Chem, 2006, 8: 784-786
[59]
68 Mikkola J P, Kirilin A, Tuuf J C, et al. Ultrasound enhancement of cellulose processing in ionic liquids: From dissolution towards functionalization. Green Chem, 2007, 9: 1229-1237
[60]
69 Sarah K?hler S, Liebert T, Heinze T, et al. Interactions of ionic liquids with polysaccharides 9. Hydroxyalkylation of cellulose without additional inorganic bases. Cellulose, 2010, 17: 437-448
71 Erdmenger T, Haensch C, Hoogenboom R, et al. Homogeneous tritylation of cellulose in 1-butyl-3-methylimidazolium chloride. Macromol Biosci, 2007, 7: 440-445
[63]
72 Vitz J, Erdmenger T, Haensch C, et al. Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem, 2009, 11: 417-424
[64]
73 Granstr?m M, Olszewska A, M?kel? V, et al. A new protection group strategy for cellulose in an ionic liquid: Simultaneous protection of two sites to yield 2,6-di-O-substituted mono-p-methoxytrityl cellulose. Tetrahedr Lett, 2009, 50: 1744-1747
[65]
74 K?hler S, Liebert T, Heinze T. Interactions of ionic liquids with polysaccharides. VI. Pure cellulose nanoparticles from trimethylsilyl cellulose synthesized in ionic liquids. J Polym Sci Pt A Polym Chem, 2008, 46: 4070-4080
[66]
75 Mormann W, Wezstein M. Trimethylsilylation of cellulose in ionic liquids. Macromol Biosci, 2009, 9: 369-375
[67]
76 Sui X F, Yuan J J, Zhou M, et al. Synthesis of cellulose-graft-poly(N,N-dimethylamino-2-ethyl methacrylate) copolymers via homogeneous ATRP and their aggregates in aqueous media. Biomacromol, 2008, 9: 2610-2615
[68]
77 Guo L Y, Shi T J, Li Z. Dissolution of microcrystalline cellulose and its graft copolymer in ionic liquid of 1-allyl-3-ethylimidazolium chloride. E-Polymers, 2009, 116
[69]
78 Wei X Y, Chang G, Li J H, et al. Preparation of pH- and salinity-responsive cellulose copolymer in ionic liquid. J Polym Res, 2014, 21: 535
[70]
79 Lin C X, Zhan H Y, Liu M H, et al. Novel preparation and characterization of cellulose microparticles functionalized in ionic liquids. Langmuir, 2009, 25: 10116-10120
[71]
80 Lin C X, Zhan H Y, Liu M H, et al. Rapid homogeneous preparation of cellulose graft copolymer in BmimCl under microwave irradiation. J Appl Polym Sci, 2010, 118: 399-404
[72]
81 Zhang Y, Li X D, Li H F, et al. Thermal and rheological properties of cellulose-graft polyacrylamide synthesized by in situ graft copolymerization. RSC Adv, 2013, 3: 11732-11737
[73]
82 Hao Y, Peng J, Li J Q, et al. An ionic liquid as reaction media for radiation-induced grafting of thermosensitive poly(N-isopropylacryla- mide) onto microcrystalline cellulose. Carbohydr Polym, 2009, 77: 779-784
[74]
83 Yan C H, Zhang J M, Lv Y X, et al. Thermoplastic cellulose-graft-poly(L-lactide) copolymers homogeneously synthesized in an ionic liquid with 4-dimethylaminopyridine catalyst. Biomacromolecules, 2009, 10: 2013-2018
[75]
84 Luan Y H, Wu J, Zhan M S, et al. “One pot” homogeneous synthesis of thermoplastic cellulose acetate-graft-poly(L-lactide) copolymers from unmodified cellulose. Cellulose, 2013, 20: 327-337
[76]
85 Dai L, Xiao S, Shen Y, et al. The synthesis of cellulose-graft-poly(L-lactide) by ring-opening polymerization and the study of its degradability. Bull Korean Chem Soc, 2012, 33: 4122-4126
[77]
86 Guo Y Z, Wang X H, Shu X C, et al. Self-assembly and paclitaxel loading capacity of cellulose-graft poly(lactide) nanomicelles. J Agric Food Chem, 2012, 60: 3900-3908
[78]
87 Guo Y Z, Liu Q L, Chen H, et al. Direct grafting modification of pulp in ionic liquids and self-assembly behavior of the graft copolymers. Cellulose, 2013, 20: 873-884
[79]
88 Zhu J, Wang W T, Wang X L, et al. Green synthesis of a novel biodegradable copolymer base on cellulose and poly(p-dioxanone) in ionic liquid. Carbohydr Polym, 2009, 76: 139-144
[80]
89 Li Y X, Wu M, Liu R G, et al. Cellulose-based solid-solid phase change materials synthesized in ionic liquid. Solar Energy Mater Solar Cells, 2009, 93: 1321-1328
[81]
90 Huang K L, Wu R, Cao Y, et al. Recycling and reuse of ionic liquid in homogeneous cellulose acetylation. Chin J Chem Eng, 2013, 21: 577-584
[82]
91 Shi J Z, Stein J, Kabasci S, et al. Purification of EMIMOAc used in the acetylation of lignocellulose. J Chem Eng Data, 2013, 58: 197-202
[83]
37 Schenzel A, Hufendiek A, Barner-Kowollik C, et al. Catalytic transesterification of cellulose in ionic liquids: Sustainable access to cellulose esters. Green Chem, 2014, 16: 3266-3271
[84]
38 Cao Y, Zhang J, He J S, et al. Homogeneous acetylation of cellulose at relatively high concentrations in an ionic liquid. Chin J Chem Eng, 2010, 18: 515-522
[85]
39 Kosan B, Dorn S, Meister F, et al. Preparation and subsequent shaping of cellulose acetates using ionic liquids. Macromol Mater Eng, 2010, 295: 676-681
[86]
40 Zhang Y, Li H F, Li X D, et al. Chemical modification of cellulose by in situ reactive extrusion in ionic liquid. Carbohydr Polym, 2014, 99: 126-131
[87]
41 Liu R Q, Bai L Y, Zhang Y J, et al. Green synthesis of a typical chiral stationary phase of cellulose-tris(3,5-dimethylphenylcarbamate). Chem Cent J, 2013, 7: 129
[88]
42 Liu R Q, Zhang Y J, Bai L Y, et al. Synthesis of cellulose-2,3-bis(3,5-dimethylphenylcarbamate) in an ionic liquid and its chiral separation efficiency as stationary phase. Int J Mol Sci, 2014, 15: 6161-6168
[89]
43 Zhang J M, Wu J, Cao Y, et al. Synthesis of cellulose benzoates under homogeneous conditions in an ionic liquid. Cellulose, 2009, 16: 299-308
[90]
44 Chen J, Zhang J M, Chen W W, et al. Homogeneous synthesis of cellulose naphthoate in an ionic liquid. Acta Polym Sin, 2013, 10: 1235-1240
[91]
45 K?hler S, Heinze T. Efficient synthesis of cellulose furoates in 1-N-butyl-3-methylimidazolium chloride. Cellulose, 2007, 14: 489-495