全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

钛硅分子筛固定床催化环己酮肟的绿色合成

DOI: 10.1360/N972014-01250, PP. 1538-1545

Keywords: 钛硅分子筛,Ti-MOR,固定床,环己酮肟,液相氧化

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用挤条成型的方法,通过添加造孔剂、黏结剂和水,制备了3种典型钛硅分子筛(Ti-MOR,Ti-MWW和TS-1)的成型催化剂,并研究了以H2O2为氧化剂,成型催化剂催化环己酮液相氨氧化反应的固定床工艺过程.首先考察了钛硅分子筛粉末在环己酮氨氧化间歇反应中的催化活性,发现3种钛硅分子筛的催化性能是Ti-MOR>TS-1>Ti-MWW.其后在固定床连续反应器上,比较了这3种成型钛硅催化剂的催化性能,结果表明,Ti-MOR比TS-1和Ti-MWW表现得更为优异,这与间歇反应结果一致.另外,系统地考察了影响成型Ti-MOR分子筛催化该反应活性和肟选择性的因素.在最优化反应条件下成型Ti-MOR催化剂表现出非常出色的催化性能,环己酮转化率和环己酮肟选择性分别高于95%和99%.成型Ti-MOR催化剂在固定床连续反应的寿命评价实验中,可以实现连续运行360h,环己酮的转化率保持在95%,肟的选择性高于99%,H2O2残留量为3%.积炭和部分活性位Ti的流失是造成催化剂失活的主要原因,失活的Ti-MOR通过在空气中823K焙烧可以有效再生,再生催化剂的催化性能约为新鲜催化剂的80%,但对环己酮肟的选择性仍维持在99%以上.

References

[1]  1 Toshio O. New catalysis functions of heteropoly compounds as solid acids. Catal Today, 2002, 73: 167-176
[2]  2 Bellussi G, Rigutto M S. Metal ions associated to molecular sieve frameworks as catalytic sites for selective oxidation reactions. Stud Surf Sci Catal, 2001, 137: 911-955
[3]  3 Dahlhoff G, Niederer J P M, Hoelderich W F. e-Caprolactam: New by-product free synthesis routes. Catal Rev Sci Eng, 2001, 43: 381-441
[4]  4 Cesana A, Mantegazza M A, Pastori M. A study of the organic by-products in the cyclohexanone ammoximation. J Mol Catal A Chem, 1997, 117: 367-373
[5]  5 Perego C, Carati A, Ingallina P, et al. Production of titanium containing molecular sieves and their application in catalysis. Appl Catal A, 2001, 221: 63-72
[6]  6 Ichihashi H, Sato H. The development of new heterogeneous catalytic processes for the production of e-caprolactam. Appl Catal A, 2001, 221: 359-366
[7]  7 Tatsumi T, Nakamura M, Negishi S, et al. Shape-selective oxidation of alkanes with H2O2 catalyzed by titanosilicate. J Chem Soc Chem Commun, 1990, 110: 476-478
[8]  8 Roffia P, Padovan M, Leofanti G, et al. Catalytic process for the manufacture of oximes. US Patent, 4794198, 1988-12-27
[9]  9 Taramasso M, Perego G, Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US Patent, 4410501, 1983-10-18
[10]  10 Thangaraj A, Sivasanker S, Ratnasamy P. Catalytic properties of crystalline titanium-silicalite: Ⅲ. Ammoximation of cyclohexanone. J Catal, 1991, 131: 394-400
[11]  11 Wu P, Komatsu T, Yashima T. Ammoximation of ketones over titanium mordenite. J Catal, 1997, 168: 400-411
[12]  12 Xu H, Zhang Y T, Wu H H, et al. Postsynthesis of mesoporous MOR-type titanosilicate and its unique catalytic properties in liquid-phase oxidations. J Catal, 2011, 281: 263-272
[13]  13 Ding J H, Xu L, Xu H, et al. Highly efficient synthesis of methyl ethyl ketone oxime through ammoximation over Ti-MOR catalyst. Chin J Catal, 2013, 34: 243-250
[14]  14 Wu P, Tatsumi T, Komatsu T, et al. Hydrothermal synthesis of a novel titanosilicate with MWW topology. Chem Lett, 2000, 29: 774-775
[15]  15 Wu P, Tatsumi T, Komatsu T, et al. A novel titanosilicate with MWW structure: II. Catalytic properties in the selective oxidation of alkenes. J Catal, 2001, 202: 245-255
[16]  16 Le Bars J, Dakka J, Sheldon R A. Ammoximation of cyclohexanone and hydroxyaromatic ketones over titanium molecular sieves. Appl Catal A, 1996, 136: 69-80
[17]  17 Corma A, Camblor M A, Esteve P, et al. Activity of Ti-Beta catalyst for the selective oxidation of alkenes and alkanes. J Catal, 1994, 145: 151-158
[18]  18 Reddy J S, Sivasanker S, Ratnasamy P. Ammoximation of cyclohexanone over a titanium silicate molecular sieve, TS-2. J Mol Catal, 1991, 69: 383-392
[19]  19 Wu P, Tatsumi T. Unique trans-selectivity of Ti-MWW in epoxidation of cis/trans-alkenes with hydrogen peroxide. J Phys Chem B, 2002, 106: 748-753
[20]  20 Wu P, Liu Y M, He M Y, et al. A novel titanosilicate with MWW structure: Catalytic properties in selective epoxidation of diallyl ether with hydrogen peroxide. J Catal, 2004, 228: 183-191
[21]  21 Wu P, Nuntasri D, Liu Y M, et al. Selective liquid-phase oxidation of cyclopentene over MWW type titanosilicate. Catal Today, 2006, 117: 199-205
[22]  22 Wang L L, Liu Y M, Xie W, et al. Highly efficient and selective production of epichlorohydrin through epoxidation of allyl chloride with hydrogen peroxide over Ti-MWW catalysts. J Catal, 2007, 246: 205-214
[23]  23 Song F, Liu Y M, Wu H H, et al. A novel titanosilicate with MWW structure: Highly effective liquid-phase ammoximation of cyclohexanone. J Catal, 2006, 237: 359-367
[24]  24 Zhao S, Xie W, Yang J X, et al. An investigation into cyclohexanone ammoximation over Ti-MWW in a continuous slurry reactor. Appl Catal A, 2011, 394: 1-8
[25]  25 Serrano D P, Sanz R, Pizarro P. Preparation of extruded catalysts based on TS-1 zeolite for their application in propylene epoxidation. Catal Today, 2009, 143: 151-157
[26]  26 Zhuo Z X, Lin L F, Deng X J, et al. Fixed-bed process of liquid-phase ammoximation of cyclohexanone over titanosilicates. Chin J Catal, 2013, 34: 604-611
[27]  27 Zuo Y, Song W, Wang M. Epoxidation of propylene over small-crystal TS-1 extrudate in a fixed-bed reactor. Acta Phys Chim Sin, 2013, 19: 183-190
[28]  28 Zhang L Y, Xu L, Sun J J, et al. Enhancement of alkene epxidation activity of titanosilicates by gas-phase ammonia modification. Chin J Chem, 2012, 30: 2205-2211
[29]  29 Xu L, Ding J H, Yang Y L, et al. Distinctions of hydroxylamine formation and decomposition in cyclohexanone ammoximation over microporous titanosilicates. J Catal, 2014, 309: 1-10
[30]  30 Mantegazza M A, Leofanti G, Petrini G, et al. Selective oxidation of ammonia to hydroxylamine with hydrogen peroxide on titanium based catalysts. Stud Surf Sci Catal, 1994, 82: 541-550

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133