全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

甲醇脱氢和选择氧化制备甲酸甲酯的催化剂与反应路径

DOI: 10.1360/N972014-01349, PP. 1502-1512

Keywords: 甲醇,甲酸甲酯,脱氢,选择氧化,反应路径

Full-Text   Cite this paper   Add to My Lib

Abstract:

甲酸甲酯是重要的化学中间体.围绕甲酸甲酯的高效制备,本文总结了甲醇脱氢和选择氧化2种方法所使用的金属和金属氧化物催化剂的结构与其催化性能之间的关系以及所涉及的反应路径,分析了影响反应路径和甲酸甲酯选择性的关键因素.这些认识将有助于设计和构筑具有特定结构和功能的金属氧化物、贵金属以及贵金属-金属氧化物复合催化剂,从而实现甲醇到甲酸甲酯的高效定向转化.

References

[1]  1 Olah G A, Goeppert A, Prakash G K S. Beyond Oil and Gas: The Methanol Economy. Weinheim: Wiley-VCH, 2009
[2]  2 Jenner G. Homogeneous catalytic reactions involving methyl formate. Appl Catal A, 1995, 121: 25-44
[3]  3 Lee J S, Kim J C, Kim Y G. Methyl formate as a new building block in C1 chemistry. Appl Catal, 1990, 57: 1-30
[4]  4 He L, Liu H C, Xiao C X, et al. Liquid phase synthesis of methyl formate via heterogeneous carbonylation of methanol over a soluble copper nanocluster catalyst. Green Chem, 2008, 10: 619-622
[5]  5 Di Girolamo M, Lami M, Marchionna M, et al. Methanol carbonylation to methyl formate catalyzed by strongly basic resins. Catal Lett, 1996, 38: 127-131
[6]  6 Tatibouet J M. Methanol oxidation as a catalytic surface probe. Appl Catal A, 1997, 148: 213-252
[7]  7 Badlani M, Wachs I E. Methanol: A "smart" chemical probe molecule. Catal Lett, 2001, 75: 137-149
[8]  8 Chen W L, Liu H C. Relationship between the structures of metal oxide catalysts and their properties in selective oxidation of methanol (in Chinese). Acta Phys Chim Sin, 2012, 28: 2315-2326 [陈文龙, 刘海超. 甲醇选择氧化金属氧化物催化剂的结构与其催化性能的关系. 物理化学学报, 2012, 28: 2315-
[9]  9 Sodesawa T, Nagacho M, Onodera A, et al. Dehydrogenation of methanol to methyl formate over Cu-SiO2 catatysts prepared by ion exchange method. J Catal, 1986, 102: 460-463
[10]  10 Wang Y Q, Gang R, Sen H. Dehydrocoupling of methanol to methyl formate overa a Cu/Cr2O3 catalyst. React Kinet Catal Lett, 1999, 67: 305-310
[11]  11 Sodesawa T. Effect of support on dehydrogenation of methanol to methyl formate over Cu-containing catalysts prepared by ion exchange. React Kinet Catal Lett, 1986, 32: 63-69
[12]  12 Chung M J, Moon D J, Park K Y, et al. Mechanism of methyl formate formation on Cu/ZnO catalysts. J Catal, 1992, 136: 609-612
[13]  13 Tonner S P, Trimm D L, Wainwright M S, et al. Dehydrogenation of methanol to methyl formate over copper catalysts. Ind Eng Chem Prod Res Dev, 1984, 23: 384-388
[14]  14 Sato S, Iijima M, Nakayama T, et al. Vapor-phase dehydrocoupling of methanol to methyl formate over CuAl2O4. J Catal, 1997, 169: 447-454
[15]  15 Rodriguez-Ramos I, Guerrero-Ruiz A, Rojas M L, et al. Dehydrogenation of methanol to methyl formate over copper-containing perovskite-type oxides. Appl Catal, 1991, 68: 217-228
[16]  16 Takagi K, Morikawa Y, Ikawa T. Catalytic activities of coppers in the various oxidation states for the dehydrogenation of methanol. Chem Lett, 1985, 14: 527-530
[17]  17 Tsoncheva T, Sarkadi-Priboczki E. 11C-radiolabeling study of methanol decomposition on copper oxide modified mesoporous SBA-15 silica. Appl Surf Sci, 2011, 257: 6661-6666
[18]  18 Domokos L, Katona T, Molnár á, et al. Amorphous alloy catalysis VIII. A new activation of an amorphous Cu41Zr59 alloy in the transformation of methyl alcohol to methyl formate. Appl Catal A, 1996, 142: 151-158
[19]  19 Cant N W, Tonner S P, Trimm D L, et al. Isotopic labeling studies of the mechanism of dehydrogenation of methanol to methyl formate over copper-based catalysts. J Catal, 1985, 91: 197-207
[20]  20 Xu L J, Mei D H, Henkelman G. Adaptive kinetic Monte Carlo simulation of methanol decomposition on Cu(100). J Chem Phys, 2009, 131: 244520
[21]  21 Huang X, Cant N W, Wainwright M S, et al. The dehydrogenation of methanol to methyl formate: Part I. Kinetic studies using copper-based catalysts. Chem Eng Process, 2005, 44: 393-402
[22]  22 Mueller L L, Griffin G L. Formaldehyde conversion to methanol and methyl formate on copper/zinc oxide catalysts. J Catal, 1987, 105: 352-358
[23]  23 Iwasa N, Takezawa N. New supported Pd and Pt alloy catalysts for steam reforming and dehydrogenation of methanol. Top Catal, 2003, 22: 215-224
[24]  24 Takezawa N, Iwasa N. Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals. Catal Today, 1997, 36: 45-56
[25]  25 Iwasa N, Akazawa T, Ohyama S, et al. Dehydrogenation of methanol to methyl formate over supported Ni, Pd and Pt catalysts. Anomalous catalytic functions of PdZn and PtZn alloys. React Kinet Catal Lett, 1995, 55: 245-250
[26]  26 Chen Z X, Neyman K M, Gordienko A B, et al. Surface structure and stability of PdZn and PtZn alloys: Density-functional slab model studies. Phys Rev B, 2003, 68: 075417
[27]  27 Jeroro E, Vohs J M. Zn modification of the reactivity of Pd(111) toward methanol and formaldehyde. J Am Chem Soc, 2008, 130: 10199-10207
[28]  28 Neyman K M, Lim K H, Chen Z X, et al. Microscopic models of PdZn alloy catalysts: Structure and reactivity in methanol decomposition. Phys Chem Chem Phys, 2007, 9: 3470-3482
[29]  29 Chen Z X, Neyman K M, Lim K H, et al. CH3O decomposition on PdZn(111), Pd(111), and Cu(111). A theoretical study. Langmuir, 2004, 20: 8068-8077
[30]  30 Lim K H, Chen Z X, Neyman K M, et al. Comparative theoretical study of formaldehyde decomposition on PdZn, Cu, and Pd surfaces. J Phys Chem B, 2006, 110: 14890-14897
[31]  31 Guo Y L, Lu G Z, Mo X H, et al. Vapor-phase dehydrogenation of methanol to methyl formate in catalytic membrane reactor with Pd/SiO2/ceramic composite membrane. Chem Lett, 2004, 33: 1628-1629
[32]  32 Guo Y L, Lu G Z, Mo X H, et al. Vapor phase dehydrogenation of methanol to methyl formate in the catalytic membrane reactor with Cu/SiO2/ceramic composite membrane. Catal Lett, 2005, 99: 105-108
[33]  33 Huang Z W, Chen J, Jia Y Q, et al. Selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol over copper catalysts. Appl Catal B, 2014, 147: 377-386
[34]  34 Guerreiro E D, Gorriz O F, Larsen G, et al. Cu/SiO2 catalysts for methanol to methyl formate dehydrogenation: A comparative study using different preparation techniques. Appl Catal A, 2000, 204: 33-48
[35]  35 Dagle R A, Chin Y H, Wang Y. The effects of PdZn crystallite size on methanol steam reforming. Top Catal, 2007, 46: 358-362
[36]  36 N?rskov J K, Bligaard T, Hvolb?k B, et al. The nature of the active site in heterogeneous metal catalysis. Chem Soc Rev, 2008, 37: 2163-2171
[37]  37 Tsoncheva T, Venkov T, Dimitrov M, et al. Copper-modified mesoporous MCM-41 silica: FTIR and catalytic study. J Mol Catal A Chem, 2004, 209: 125-134
[38]  38 Ai M. The production of methyl formate by the vapor-phase oxidation of methanol. J Catal, 1982, 77: 279-288
[39]  39 Wang R Y, Wu Z W, Chen C M, et al. Graphene-supported Au-Pd bimetallic nanoparticles with excellent catalytic performance in selective oxidation of methanol to methyl formate. Chem Commun, 2013, 49: 8250-8252
[40]  40 Liu H C, Iglesia E. Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperaturest. J Phys Chem B, 2005, 109: 2155-2163
[41]  41 Deo G, Wachs I E. Reactivity of supported vanadium oxide catalysts: The partial oxidation of methanol. J Catal, 1994, 146: 323-334
[42]  42 Hu H C, Wachs I E. Catalytic properties of supported molybdenum oxide catalysts: In situ Raman and methanol oxidation studies. J Phys Chem, 1995, 99: 10911-10922
[43]  43 Louis C, Tatibou?t J M, Che M. Catalytic properties of silica-supported molybdenum catalysts in methanol oxidation: The influence of molybdenum dispersion. J Catal, 1988, 109: 354-366
[44]  44 Valente N G, Arrúa L A, Cadús L E. Structure and activity of Sn-Mo-O catalysts: Partial oxidation of methanol. Appl Catal A, 2001, 205: 201-214
[45]  45 Tronconi E, Elmi A S, Ferlazzo N, et al. Methyl formate from methanol oxidation over coprecipitated V-Ti-O catalysts. Ind Eng Chem Res, 1987, 26: 1269-1275
[46]  46 Liu J L, Zhan E S, Cai W J, et al. Methanol selective oxidation to methyl formate over ReOx/CeO2 catalysts. Catal Lett, 2008, 120: 274-280
[47]  47 Li J L, Zhang X G, Inui T. Improvement in the catalyst activity for direct synthesis of dimethyl ether from synthesis gas through enhancing the dispersion of CuO/ZnO/γ-Al2O3 in hybrid catalysts. Appl Catal A, 1996, 147: 23-33
[48]  48 Liu H C, Iglesia E. Selective oxidation of dimethylether to formaldehyde on small molybdenum oxide domains. J Catal, 2002, 208: 1-5
[49]  49 Cai G Y, Liu Z M, Shi R M, et al. Light alkenes from syngas via dimethyl ether. Appl Catal A, 1995, 125: 29-38
[50]  50 Liu H C, Iglesia E. Selective one-step synthesis of dimethoxymethane via methanol or dimethyl ether oxidation on H3+nVnMO12-nPO40 Keggin structures. J Phys Chem B, 2003, 107: 10840-10847
[51]  51 Liu G B, Zhang Q D, Han Y Z, et al. Selective oxidation of dimethyl ether to methyl formate over trifunctional MoO3-SnO2 catalyst under mild conditions. Green Chem, 2013, 15: 1501-1504
[52]  52 Wang H, Shen J H, Liu H C, et al. Method for synthesizing methyl formate through selected oxidation of dimethyl ether (in Chinese). PRC Patent, CN1300094-C, 2005-11-16 [王华, 沈江汉, 刘红超, 等. 一种二甲醚选择氧化制备甲酸甲酯的方法. 中国专利, CN1300094-C, 2005-11-
[53]  53 Liu G B, Zhang Q D, Yang C H, et al. Catalyst for synthesizing methyl formate by oxidizing dimethyl ether at low temperature, as well as preparation method and application thereof (in Chinese). PRC Patent, CN102553566-A, 2011-07-11 [刘广波, 张清德, 杨彩虹, 等. 一种二甲醚低温氧化制取甲酸甲酯的催化剂及其制备方法和应用. 中国专利, CN102553566-A, 2011-07-
[54]  54 Seki T, Tachikawa H, Yamada T, et al. Synthesis of phthalide-skeleton using selective intramolecular Tishchenko reaction over solid base catalysts. J Catal, 2003, 217: 117-126
[55]  55 Seki T, Kabashima H, Akutsu K, et al. Mixed Tishchenko reaction over solid base catalysts. J Catal, 2001, 204: 393-401
[56]  56 Seki T, Hattori H. Tishchenko reaction over solid base catalysts. Catal Surv Asia, 2003, 7: 145-156
[57]  57 Seki T, Nakajo T, Onaka M. The Tishchenko reaction: A classic and practical tool for ester synthesis. Chem Lett, 2006, 35: 824-829
[58]  58 Tanabe K, Saito K. The conversion of benzaldehyde into benzyl benzoate with alkaline earth metal oxide catalysts. J Catal, 1974, 35: 247-255
[59]  59 Ai M. The reaction of formaldehyde on various metal oxide catalysts. J Catal, 1983, 83: 141-150
[60]  86 Stowers K J, Madix R J, Friend C M. From model studies on Au(111) to working conditions with unsupported nanoporous gold catalysts: Oxygen-assisted coupling reactions. J Catal, 2013, 308: 131-141
[61]  87 Deng X Y, Min B K, Guloy A, et al. Enhancement of O2 dissociation on Au(111) by adsorbed oxygen: Implications for oxidation catalysis. J Am Chem Soc, 2005, 127: 9267-9270
[62]  88 Xu B J, Liu X Y, Haubrich J, et al. Vapour-phase gold-surface-mediated coupling of aldehydes with methanol. Nat Chem, 2010, 2: 61-65
[63]  89 Xu B J, Liu X Y, Haubrich J, et al. Selectivity control in gold-mediated esterification of methanol. Angew Chem Int Ed, 2009, 48: 4206-4209
[64]  90 Xu B J, Haubrich J, Baker T A, et al. Theoretical study of O-assisted selective coupling of methanol on Au(111). J Phys Chem C, 2011, 115: 3703-3708
[65]  91 Xu B J, Haubrich J, Freyschlag C G, et al. Oxygen-assisted cross-coupling of methanol with alkyl alcohols on metallic gold. Chem Sci, 2010, 1: 310-314
[66]  92 Xu B J, Madix R J, Friend C M. Achieving optimum selectivity in oxygen assisted alcohol cross-coupling on gold. J Am Chem Soc, 2010, 132: 16571-16580
[67]  93 Madix R J. Molecular transformations on single crystal metal surfaces. Science, 1986, 233: 1159-1166
[68]  94 Herein S D, Nagy A, Schubert H, et al. The reaction of molecular oxygen with silver at technical catalytic conditions: Bulk structural consequences of a gas-solid interface reaction. Z Phys Chem, 1996, 197: 67-96
[69]  95 Waterhouse G I, Bowmaker G A, Metson J B. Oxygen chemisorption on an electrolytic silver catalyst: A combined TPD and Raman spectroscopic study. Appl Surf Sci, 2003, 214: 36-51
[70]  96 Nagy A, Mestl G, Rühle T, et al. The dynamic restructuring of electrolytic silver during the formaldehyde synthesis reaction. J Catal, 1998, 179: 548-559
[71]  97 Yang Z, Li J, Yang X G, et al. Catalytic oxidation of methanol to methyl formate over silver—A new purpose of a traditional catalysis system. Catal Lett, 2005, 100: 205-211
[72]  98 Li Z W, Xu J L, Gu X H, et al. Selective gas-phase oxidation of alcohols over nanoporous silver. ChemCatChem, 2013, 5: 1705-1708
[73]  99 Keresszegi C, Bürgi T, Mallat T, et al. On the role of oxygen in the liquid-phase aerobic oxidation of alcohols on palladium. J Catal, 2002, 211: 244-251
[74]  100 Mallat T, Baiker A. Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions. Catal Today, 1994, 19: 247-283
[75]  101 Besson M, Gallezot P. Selective oxidation of alcohols and aldehydes on metal catalysts. Catal Today, 2000, 57: 127-141
[76]  102 Lichtenberger J, Lee D, Iglesia E. Catalytic oxidation of methanol on Pd metal and oxide clusters at near-ambient temperatures. Phys Chem Chem Phys, 2007, 9: 4902-4906
[77]  60 Ai M. Dimerization of formaldehyde to methyl formate on SnO2-WO3 catalysts. Appl Catal, 1984, 9: 371-377
[78]  61 Parmaliana A, Frusteri F, Arena F, et al. Synthesis of methyl formate via two-step methane partial oxidation. Catal Today, 1998, 46: 117-125
[79]  62 Liu H C, Iglesia E. Effects of support on bifunctional methanol oxidation pathways catalyzed by polyoxometallate Keggin clusters. J Catal, 2004, 223: 161-169
[80]  63 Liu H C, Chen W L. Synthetic method of methyl formate (in Chinese). PRC Patent, CN104016857-A, 2014-09-03 [刘海超, 陈文龙. 制备甲酸甲酯的方法. 中国专利, CN104016857-A, 2014-09-
[81]  64 Over H. Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: From fundamental to applied research. Chem Rev, 2012, 112: 3356-3426
[82]  65 Zang L, Kisch H. Room temperature oxidation of carbon monoxide catalyzed by hydrous ruthenium dioxide. Angew Chem Int Ed, 2000, 39: 3921-3922
[83]  66 Seki K. Development of RuO2/rutile-TiO2 catalyst for industrial HCl oxidation process. Catal Surv Asia, 2010, 14: 168-175
[84]  67 Zhan B Z, White M A, Sham T K, et al. Zeolite-confined nano-RuO2: A green, selective, and efficient catalyst for aerobic alcohol oxidation. J Am Chem Soc, 2003, 125: 2195-2199
[85]  68 Li W Z, Liu H C, Iglesia E. Structures and properties of zirconia-supported ruthenium oxide catalysts for the selective oxidation of methanol to methyl formate. J Phys Chem B, 2006, 110: 23337-23342
[86]  69 Huang H, Li W Z, Liu H C. Effect of treatment temperature on structures and properties of zirconia-supported ruthenium oxide catalysts for selective oxidation of methanol to methyl formate. Catal Today, 2012, 183: 58-64
[87]  70 McCabe R W, Mitchell P J. Exhaust-catalyst development for methanol-fueled vehicles: 1. A comparative study of methanol oxidation over alumina-supported catalysts containing group 9, 10, and 11 metals. Appl Catal, 1986, 27: 83-98
[88]  71 Merte L R, Ahmadi M, Behafarid F, et al. Correlating catalytic methanol oxidation with the structure and oxidation state of size-selected Pt nanoparticles. ACS Catal, 2013, 3: 1460-1468
[89]  72 Liu H C, Huang H. Catalyst for synthesizing methyl formate by selective oxidation of methanol, as well as preparation method thereof (in Chinese). PRC Patent, CN101985103-B, 2013-03-27 [刘海超, 黄华. 一种选择氧化甲醇合成甲酸甲酯的催化剂及其制备方法. 中国专利, CN101985103-B, 2013-03-
[90]  73 Wu X D, Zhang L, Weng D, et al. Total oxidation of propane on Pt/WOx/Al2O3 catalysts by formation of metastable Ptδ+ species interacted with WOx clusters. J Hazard Mater, 2012, 225-226: 146-154
[91]  74 Madix R J. Molecular transformations on single crystal metal surfaces. Science, 1986, 233: 1159-1166
[92]  75 Hvolb?k B, Janssens T V, Clausen B S, et al. Catalytic activity of Au nanoparticles. Nano Today, 2007, 2: 14-18
[93]  76 Haruta M, Kobayashi T, Sano H, et al. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C. Chem Lett, 1987, 16: 405-408
[94]  77 Xu C X, Su J X, Xu X H, et al. Low temperature CO oxidation over unsupported nanoporous gold. J Am Chem Soc, 2007, 129: 42-43
[95]  78 Kosuda K M, Wittstock A, Friend C M, et al. Oxygen-mediated coupling of alcohols over nanoporous gold catalysts at ambient pressures. Angew Chem Int Ed, 2012, 51: 1698-1701
[96]  79 Wittstock A, Wichmann A, B?umer M. Nanoporous gold as a platform for a building block catalyst. ACS Catal, 2012, 2: 2199-2215
[97]  80 Wittstock A, Zielasek V, Biener J, et al. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science, 2010, 327: 319-322
[98]  81 Fujita T, Guan P F, McKenna K, et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat Mater, 2012, 11: 775-780
[99]  82 Wittstock A, Neumann B, Schaefer A, et al. Nanoporous Au: An unsupported pure gold catalyst? J Phys Chem C, 2009, 113: 5593-5600
[100]  83 Xu B J, Siler C G F, Madix R J, et al. Ag/Au mixed sites promote oxidative coupling of methanol on the alloy surface. Chem Eur J, 2014, 20: 4646-4652
[101]  84 Zhang Q F, Li Y K, Zhang L, et al. Thin-sheet microfibrou-structured nanoporous gold/Al fiber catalysts for oxidative coupling of methanol to methyl formate. J Catal, 2014, 317: 54-61
[102]  85 Tenney S A, Cagg B A, Levine M S, et al. Enhanced activity for supported Au clusters: Methanol oxidation on Au/TiO2(110). Surf Sci, 2012, 606: 1233-1243
[103]  103 Wojcieszak R, Gaigneaux E M, Ruiz P. Direct methyl formate formation from methanol over supported palladium nanoparticles at low temperature. ChemCatChem, 2013, 5: 339-348
[104]  104 Wojcieszak R, Ghazzal M N, Gaigneaux E M, et al. Low temperature oxidation of methanol to methyl formate over Pd nanoparticles supported on gamma-Fe2O3. Catal Sci Tech, 2014, 4: 738-745
[105]  105 Lee K J, Min S H, Jang J. Preparation of a catalytic membrane reactor with palladium nanoparticles supported by a packed-bed silica nanosupporter for gas-phase methanol oxidation. Small, 2010, 6: 2378-2382
[106]  106 Rahim M H A, Forde M M, Jenkins R L, et al. Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles. Angew Chem Int Ed, 2013, 125: 1318-1322
[107]  107 Enache D I, Edwards J K, Landon P, et al. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science, 2006, 311: 362-365
[108]  108 Xu J, White T, Li P, et al. Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation. J Am Chem Soc, 2010, 132: 10398-10406
[109]  109 Wang J G, Wu Z W, Qin Z F, et al. Au-Pd bimetallic catalyst for synthesizing methyl formate by selective oxidation of methanol, as well as preparation method and application thereof (in Chinese). PRC Patent, CN103191731-A, 2013-07-10 [王建国, 吴志伟, 秦张峰, 等. 用于甲醇选择氧化制甲酸甲酯的Au-Pd双金属催化剂及其制法和应用. 中国专利, CN103191731-A, 2013-07-
[110]  110 Xu B J, Madix R J, Friend C M. Dual-function of alcohols in gold-mediated selective coupling of amines and alcohols. Chem Eur J, 2012, 18: 2313-2318
[111]  111 Siler C G F, Xu B J, Madix R J, et al. Role of surface-bound intermediates in the oxygen-assisted synthesis of amides by metallic silver and gold. J Am Chem Soc, 2012, 134: 12604-12610on gamma-Fe2O3 . Catal Sci Tech, 2014, 4: 738-745
[112]  105 Lee K J, Min S H, Jang J. Preparation of a catalytic membrane reactor with palladium nanoparticles supported by a packed-bed silica nanosupporter for gas-phase methanol oxidation. Small, 2010, 6: 2378-2382
[113]  106 Rahim M H A, Forde M M, Jenkins R L, et al. Oxidation of methane to methanol with hydrogen peroxide using supporte d gold-palladium alloy nanoparticles. Angew Chem Int Ed, 2013, 125: 1318-1322
[114]  107 Enache D I, Edwards J K, Landon P, et al. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science,2006, 311: 362-365
[115]  108 Xu J, White T, Li P, et al. Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation. J Am Chem Soc, 2010, 132: 10398-10406
[116]  109 Wang J G, Wu Z W, Qin Z F, et al. Au-Pd bimetallic catalyst for synthesizing methyl formate by selective oxidation of methanol, as well as preparation method and application thereof (in Chinese). PRC Patent, CN103191731 -A, 2013-07-10 [王建国, 吴志伟, 秦张峰, 等. 用于甲醇选择氧化制甲酸甲酯的Au-Pd双金属催化剂及其制法和应用. 中国专利, CN103191731-A, 2013-07-
[117]  110 Xu B J, Madix R J, Friend C M. Dual-function of alcohols in gold-mediated selective coupling of amines and alcohols. Chem Eur J, 2012,18: 2313-2318
[118]  111 Siler C G F, Xu B J, Madix R J, et al. Role of surface-bound intermediates in the oxygen-assisted synthesis of amides by metallic silver and gold. J Am Chem Soc, 2012, 134: 12604-12610 ?

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133