全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

山梨醇催化选择脱水的新进展

DOI: 10.1360/N972015-00030, PP. 1443-1451

Keywords: 山梨醇,1,4-脱水山梨醇,异山梨醇,酸催化,脱水

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,随着化石资源的日益枯竭,对可再生资源——生物质及其衍生物的研究越来越受到人们的重视.尤其是葡萄糖的加氢产物——山梨醇,已经成为重要的生物质转化平台化合物而受到人们极大的关注.山梨醇可以通过一次脱水生成1,4-脱水山梨醇,也可以通过二次脱水反应生成异山梨醇,而这两种脱水产物都是非常重要的化工原料.本文对山梨醇催化选择性脱水方面的新进展进行了简要评述,最后简要总结了该领域的发展趋势.

References

[1]  1 Chheda J N, Huber G W, Dumesic J A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed, 2007, 46: 7164-7183
[2]  2 St?cker M. Biofuels and biomass-to-liquid fuels in the biorefinery: Catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed, 2008, 47: 9200-9211
[3]  3 Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chem Rev, 2007, 107: 2411-2502
[4]  4 Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem Rev, 2006, 106: 4044-4098
[5]  5 Zakrzewska M E, Bogel-Lukasik E, Bogel-Lukasik R. Ionic liquid-mediated formation of 5-hydroxymethylfurfural-a promising biomass-derived building block. Chem Rev, 2011, 111: 397-417
[6]  6 Harmer M A, Fan A, Liauw A, et al. A new route to high yield sugars from biomass: Phosphoric-ulfuric acid. Chem Commun, 2009, 6610-6612
[7]  7 Dhepe P L, Fukuoka A. Cellulose conversion under heterogeneous catalysis. ChemSusChem, 2008, 1: 969-975
[8]  8 Klemm D, Heublein B, Fink H P, et al. Cellulose: Fascinating biopolymer and sustainable raw material. Angew Chem Int Ed, 2005, 44: 3358-3393
[9]  9 Vyver S V, Geboers J, Jacobs P A, et al. Recent advances in the catalytic conversion of cellulose. ChemCatChem, 2011, 3: 82-94
[10]  10 Stahlberg T, S?rensen M G, Riisager A. Direct conversion of glucose to 5-(hydroxymethyl)furfural in ionic liquids with lanthanide catalysts. Green Chem, 2010, 12: 321-325
[11]  11 Zhu H, Li C H, Mou X D. Advances in production and application of isosorbide (in Chinese). Modern Chem Ind, 2011, 31: 68-71 [朱虹, 李春虎, 牟新东. 异山梨醇的制备及应用研究进展. 现代化工, 2011, 31: 68-
[12]  12 Zhu W W, Yang H M, Hou Z S, et al. Efficient hydrogenolysis of cellulose into sorbitol catalyzed by a bifunctional catalyst. Green Chem, 2014, 16: 1534-1542
[13]  13 Hanessian S, Guidon Y, Lavallee P, et al. Total synthesis of 11-oxaprostaglandin F2α and F2β. Carbohydr Res, 1985, 141: 221-238
[14]  14 Williams D R, Klingler F D, Dabral V. Synthesis of the optically active hexahydrobenzofuran nucleus of the avermectins. Tetrahedron Lett, 1988, 29: 3415-3418
[15]  15 Zarif L, Greiner J, Riess J G. Perfluoroalkylated monoesters of 1,4-D-sorbitan, isosorbide and isomannide: New surfactants for biomedical applications. J Fluorine Chem, 1989, 44: 73-85
[16]  16 Jeong G T, Lee H J, Kim H S, et al. Enzymatic synthesis of sorbitan methacrylate according to acyl donors. Appl Biochem Biotechnol, 2006, 129: 265-277
[17]  17 Xie Y S, Yu D H, Sun P, et al. Reaction kinetics of sorbitol catalytic dehydration to isosorbide (in Chinese). Petrochem Technol, 2010, 39: 285-290 [谢毓胜, 余定华, 孙鹏, 等. 山梨醇催化脱水制备异山梨醇的反应动力学. 石油化工, 2010, 39: 285-
[18]  18 Zhu Y, Durand M, Molinier V, et al. Isosorbide as a novel polar head derived from renewable resources: Application to the design of short-chain amphiphiles with hydrotropic properties. Green Chem, 2008, 10: 532-540
[19]  19 Gorna K, Gogolewsi S. Biodegradable porous polyurethane scaffolds for tissue repair and regeneration. J Biomed Mater Res, 2006, 79A: 128-138
[20]  20 Lee C H, Takagi H, Okamoto H, et al. Synthesis, characterization, and properties of polyurethanes containing 1,4:3,6-dianhydro-D-sorbitol. J Polym Sci Part A: Polym Chem, 2009, 47: 6025-6031
[21]  21 Steenwijk J, Langerock R, Es D S, et al. Long-term heat stabilisation by (natural) polyols in heavy metal- and zinc-free poly(vinyl chloride). Polym Degrad Stab, 2006, 96: 52-59
[22]  22 Gohil R M. Properties and strain hardening character of polyethylene terephthalate containing isosorbide. Polym Eng Sci, 2009, 49: 544-553
[23]  23 Hockett R C, Fletcher Jr H G, Sheffield E L, et al. Hexitol anhydrides. The structure of isosorbide, a crystalline dianhydrosorbitol. J Am Chem Soc, 1946, 68: 927-930
[24]  24 Montgomery R, Wiggins L F. The anhydrides of polyhydric alcohols. Part IV. The constitution of dianhydro sorbitol. J Chem Soc, 1946, 390-393
[25]  25 Bock K, Pedersen C, Thogersen H. Acid catalyzed dehydration of alditols. Part I. D-glucitol and D-mannitol. Acta Chem Scand Ser B, 1981, 35: 441-449
[26]  26 Dosen-Micovic L J, Cekovic Z. Conformational effects on the mechanism of acid-catalyzed dehydration of hexitols. J Phys Org Chem, 1998, 11: 887-894
[27]  27 Cekovic Z. Stereochemistry of acid catalyzed dehydration of hexitol. J Serb Chem Soc, 1986, 51: 205-211
[28]  28 Barker R. ConVersion of acyclic carbohydrates to tetrahydrofuran derivatives. Acid-catalyzed dehydration of hexitols. J Org Chem, 1970, 35: 461-464
[29]  29 Fleche G, Huchette M. Isosorbide, preparation, properties and Chemistry. Starch/Staerke, 1986, 38: 26-30
[30]  30 Li N, Huber G W. Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2-Al2O3: Identification of reaction intermediates. J Catal, 2010, 270: 48-59
[31]  31 Montassier C, Menezo J C, Naja J, et al. Polyol conversion into furanic derivatives on bimetallic catalysts: Nature of the catalytic sites. J Mol Catal, 1994, 91: 119-128
[32]  32 Sun P, Yu D H, Hu Y, et al. H3PW12O40/SiO2 for sorbitol dehydration to isosorbide: High efficient and reusable solid acid catalyst. Korean J Chem Eng, 2011, 28: 99-105
[33]  33 Li J R, Spina A, Makkee M, et al. Sorbitol dehydration into isosorbide in a molten salt hydrate medium. Catal Sci Technol, 2013, 3: 1540-1546
[34]  34 Yamaguchi A, Hiyoshi N, Sato O, et al. Sorbitol dehydration in high temperature liquid water. Green Chem, 2013, 13: 873-881
[35]  35 Atlas Powder Company. Sorbitan and process for making. US Patent, 2390395, 1945
[36]  36 Mao D S, Lu W K, Chen Q L, et al. New environment friendly technology of solid acid catalyst instead of liquid catalyst (in Chinese). Petrochem Technol, 2001, 30: 152-156 [毛东森, 卢文奎, 陈庆龄, 等. 固体酸代替液体酸催化剂的环境友好新工艺. 石油化工, 2001, 30: 152-
[37]  37 Zuo Y, Zhang Y, Fu Y. Catalytic conversion of cellulose into levulinic acid by a sulfonated chloromethyl polystyrene solid acid catalyst. ChemCatChem, 2014, 6: 753-757
[38]  38 Nabae Y, Liang J, Huang X, et al. Sulfonic acid functionalized hyperbranched poly(ether sulfone) as a solid acid catalyst. Green Chem, 2014, 16: 3596-3602
[39]  39 Wang P, Li H, Gao Q, et al. Fabrication of novel hybrid nanoflowers from boron nitride nanosheets and metal-organic frameworks: A solid acid catalyst with enhanced catalytic performance. J Mater Chem A, 2014, 2: 18731-18735
[40]  40 Chen S Y, Mochizuki T, Toba M, et al. Ti-incorporated SBA-15 mesoporous silica as an efficient and robust Lewis solid acid catalyst for the production of high-quality biodiesel fuels. Appl Catal B: Environ, 2014, 148-149: 344-356
[41]  41 Kurszewska M, Skorupowa E, Madaj J, et al. The solvent-free thermal dehydration of hexitols on zeolites. Carbohydr Res, 2002, 337: 1261-1268
[42]  42 Duclos A, Fayet C, Gelas J. A simple conversion of polyols into anhydroalditols. Synthesis, 1994, 10: 1087-1090
[43]  43 Morita Y, Furusato S, Takagaki A, et al. Intercalation-controlled cyclodehydration of sorbitol in water over layered-niobium-molybdate solid acid. ChemSusChem, 2014, 7: 748-752
[44]  44 Atlas Chemical Industries. Purification of isosorbide. US Patent, 160641, 1964
[45]  45 Schreck D, Bradford M, Clinton N, et al. Dianhydrosugar production process. US Patant, WO09126852, 2009
[46]  46 Li J R, Buijs W, Berger R J, et al. Sorbitol dehydration in a ZnCl2 molten salt hydrate medium: Molecular modeling. Catal Sci Technol, 2014, 4: 152-163
[47]  47 Ahmeda I, Khan N A, Mishra D K, et al. Liquid-phase dehydration of sorbitol to isosorbide using sulfated titania as a solid acid catalyst. Chem Eng Sci, 2013, 93: 91-95
[48]  48 Zhang X W, Sun P, Li Z W, et al. Research of sorbitol dehydration to isosorbide over solid catalyst. The National Symposium for Bio Chemical Engineering (in Chinese). Chin Chem Soc, 2011, 187-192 [张小伟, 孙鹏, 李正文, 等. 催化山梨醇脱水制备异山梨醇的固体酸催化剂的研究. 全国生物化工技术发展研讨会论文与成果汇编. 中国化工学会, 2011, 187-
[49]  49 Xia J J, Yu D H, Hu Y, et al. Sulfated copper oxide: An efficient catalyst for dehydration of sorbitol to isosorbide. Catal Commun, 2011, 12: 544-547
[50]  50 Tang Z C, Yu D H, Sun P, et al. Phosphoric acid modified Nb2O5: A selective and reusable catalyst for dehydration of sorbitol to isosorbide. Bull Korean Chem Soc, 2010, 31: 3679-3683
[51]  51 Zhang X W, Yu D H, Zhao J B, et al. The effect of P/Ta ratio on sorbitol dehydration over modified tantalum oxide by phosphoric acid. Catal Commun, 2014, 43: 29-33
[52]  52 Gu M Y, Yu D H, Zhang H M, et al. Metal (IV) phosphates as solid catalysts for selective dehydration of sorbitol to isosorbide. Catal Lett, 2009, 133: 214-220
[53]  53 Oltmanns J U, Palkovits S, Palkovits R. Kinetic investigation of sorbitol and xylitol dehydration catalyzed by silicotungstic acid in water. Appl Catal A, 2013, 456: 168-173
[54]  54 Zhang J, Wang L, Liu F J, et al. Enhanced catalytic performance in dehydration of sorbitol to isosorbide over a superhydrophobic mesoporous acid catalyst. Catal Today, 2015, 242: 249-254
[55]  55 Sun P, Long X D, He H, et al. Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate. ChemSusChem, 2013, 6: 2190-2197
[56]  56 Xiu Y H, Chen Ang J, Liu X R, et al. Selective dehydration of sorbitol to 1,4-anhydro-D-sorbitol catalyzed by a polymer-supported acid catalyst. RSC Adv, 2015, 5: 28233-28241

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133