3 Huang Q C, Sun J S. Autotriploid plants obtained from heteroploid rice crosses (in Chinese). Acta Bot Sin, 1999, 41: 741-746 [黄群策, 孙敬三. 通过异倍性水稻间杂交获得同源三倍体植株. 植物学报, 1999, 41: 741-
[2]
4 Vinkenoog R, Bushell C, Spielman M, et al. Genomic imprinting and endosperm development in flowering plants. Mol Biotechnol, 2003, 25: 149-184
[3]
5 Arora R, Agarwal P, Ray S, et al. MADS-box gene family in rice: Genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics, 2007, 8: 242
[4]
6 Riechmann J L, Krizek B A, Meyerowitz E M. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci USA, 1996, 93: 4793-4798
[5]
7 Lohmann J U, Weigel D. Building beauty: The genetic control of floral patterning. Dev Cell, 2002, 2: 135-142
[6]
8 Yamaguchi T, Hirano H Y. Function and diversification of MADS-box genes in rice. Sci World J, 2006, 6: 1923-1932
[7]
9 Lee S, Kim J, Son J S, et al. Systematic reverse genetic screening of T-DNA tagged genes in rice for functional genomic analyses: MADS-box genes as a test case. Plant Cell Physiol, 2003, 44: 1403-1411
[8]
10 Yin L L, Xue H W. The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development. Plant Cell, 2012, 24: 1049-1065
[9]
11 Yang X, Wu F, Lin X, et al. Live and let die-the Bsister MADS-box gene OsMADS29 controls the degeneration of cells in maternal tissues during seed development of rice (Oryza sativa). PLoS One, 2012, 7: e51435
[10]
12 Nayar S, Sharma R, Tyagi A K, et al. Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis. J Exp Bot, 2013, 64: 4239-4253
[11]
13 Nayar S, Kapoor M, Kapoor S. Post-translational regulation of rice MADS29 function: Homodimerization or binary interactions with other seed-expressed MADS proteins modulate its translocation into the nucleus. J Exp Bot, 2014, 65: 5339-5350
[12]
14 Green T W, Hannah L C. Adenosine diphosphate glucose pyrophosphorylase, a rate-limiting step in starch biosynthesis. Physiol Plantarum, 1998, 103: 574-580
[13]
15 Smith-White B J, Preiss J. Comparison of proteins of ADP-glucose pyrophosphorylase from diverse sources. J Mol Evol, 1992, 34: 449-464
[14]
16 Lee S K, Hwang S K, Han M, et al. Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Mol Biol, 2007, 65: 531-546
[15]
17 Yuan D Y, Sun Z Z, Tan Y N, et al. A preliminary analysis of gene expression of seven isoforms of ADP-glucose pyrophosphorylase(AGPase) in rice endosperm under diffierent temperature conditions (in Chinese). Hybrid Rice, 2011, 26: 61-64 [袁定阳, 孙志忠, 谭炎宁, 等. 不同温度下水稻胚乳AGPase各同工酶基因表达特征初步分析. 杂交水稻, 2011, 26: 61-
[16]
18 Underhill D M, Ozinsky A, Smith K D, et al. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci USA, 1999, 96: 14459-14463
[17]
19 Thornberry N A, Lazebnik Y. Caspases: Enemies within. Science, 1998, 281: 1312-1316
[18]
20 Hatsugai N, Kuroyanagi M, Yamada K, et al. A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science, 2004, 305: 855-858
[19]
21 Coll N S, Vercammen D, Smidler A, et al. Arabidopsis type I metacaspases control cell death. Science, 2010, 330: 1393-1397
[20]
22 Sun X, Shantharaj D, Kang X, et al. Transcriptional and hormonal signaling control of Arabidopsis seed development. Curr Opin Plant Biol, 2010, 13: 611-620
[21]
23 Lur H S, Setter T L. Role of auxin in maize endosperm development (timing of nuclear DNA endoreduplication, zein expression, and cytokinin). Plant Physiol, 1993, 103: 273-280
[22]
24 Guo H, Liu X, Lu Y, et al. Structure of mature embryo sac and its abnormal phenomena in autotetraploid rice. Chin J Rice Sci, 2005, 20: 283-289
[23]
25 Li S, Li W, Huang B, et al. Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth. Nat Commun, 2013, 4: 2793
[24]
26 Yang J P. Improvement of traditional paraffin section preparation methods (in Chinese). J Biol, 2006, 23: 45-46 [杨捷频. 常规石蜡切片方法的改良. 生物学杂志, 2006, 23: 45-
[25]
27 Zhao J, Mun W F, Zhang Z X. Improvement of plant paraffin section technical (in Chinese). Anhui Agri Sci Bull, 2009, 15: 69-90 [赵俊, 木万福, 张志星. 植物石蜡切片技术改进. 安徽农学通报, 2009, 15: 69-
[26]
28 Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2-DDCT method. Methods, 2001, 25: 402-408
[27]
29 Liu L. Study on imprinting and expression of endosperm development genes in hybrid offspring from the cross of 2n and 4n rice (in Chinese). Master Dissertation. Sichuan: Sichuan Agricultural University, 2011 [刘磊. 2n与4n水稻杂种幼胚后代印记研究及胚乳发育相关基因的表达分析. 硕士学位论文. 四川: 四川农业大学,
[28]
30 Gu Y J, Xiong F, Wang Z, et al. A contrast of the endosperm development between rice and wheat (in Chinese). J Nanjing Normal Univ, 2001, 24: 65-74 [顾蕴洁, 熊飞, 王忠, 等. 水稻和小麦胚乳发育的比较. 南京师大学报: 自然科学版, 2001, 24: 65-
[29]
31 Nishiyama I, Inomata N. Embryological studies on cross-incompatibility between 2x and 4x in Brassica. Jpn J Genet, 1966, 41: 27-42
[30]
32 Johnston S A, Den Nijs T P M, Peloquin S J, et al. The significance of genic balance to endosperm development in interspecific crosses. Theor Appl Genet, 1980, 57: 5-9
[31]
33 Lin B Y. Ploidy barrier to endosperm development in maize. Genetics, 1984, 107: 103-115
[32]
1 Haig D, Westoby M. Genomic imprinting in endosperm: Its effect on seed development in crosses between species, and between different ploidies of the same species, and its implications for the evolution of apomixis. Philos Trans R Soc B Biol Sci, 1991, 333: 1-13
[33]
2 Scott R J, Spielman M, Bailey J, et al. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development, 1998, 125: 3329-3341