全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

调控水稻异倍性杂交种子败育的相关基因分析

DOI: 10.1360/N972015-00110, PP. 1592-1601

Keywords: MADS29,水稻,异倍性杂交,种子败育

Full-Text   Cite this paper   Add to My Lib

Abstract:

MADS29是控制水稻(OryzasativaL.)种子饱满程度的基因,它通过调控母体组织细胞退化和维持体内激素平衡来影响种子发育.水稻异倍性杂交往往产生败育种子,为了探讨MADS29等种子发育相关基因是否参与其调控,本研究以4份水稻材料(2个二倍体;2个四倍体)构建4个自交组合(对照)和8个杂交组合(正反交),对花粉粒育性、花粉管萌发及伸长、种子发育及MADS29等相关基因表达进行分析.结果表明(1)异倍性杂交均可正常受精,但杂交种子败育;(2)石蜡切片结果显示,授粉后3d(3dayafterpollination,3DAP),与对照相比,4n×2n胚乳已进入细胞化时期,但细胞数量较少;而2n×4n胚乳处于合胞体时期,游离核周围未形成细胞壁,胚乳细胞化时期滞后;(3)实时荧光定量PCR(qRT-PCR)表明,6DAP和8DAP,MADS29、生长素基因和母体组织细胞程序化死亡(PCD)相关基因的相对表达量在杂交种子中均明显高于对照;淀粉合成基因在杂交种子中的相对表达量显著低于对照.本实验结果表明,在水稻异倍性杂交中,MADS29高表达,生长素基因和母体组织PCD相关基因表达上调,淀粉合成相关基因表达下调,导致胚乳发育异常、种子败育,说明MADS29的高表达导致异倍性杂交种子败育,是一种有别于二倍体水稻种子发育的新型调控方式.

References

[1]  3 Huang Q C, Sun J S. Autotriploid plants obtained from heteroploid rice crosses (in Chinese). Acta Bot Sin, 1999, 41: 741-746 [黄群策, 孙敬三. 通过异倍性水稻间杂交获得同源三倍体植株. 植物学报, 1999, 41: 741-
[2]  4 Vinkenoog R, Bushell C, Spielman M, et al. Genomic imprinting and endosperm development in flowering plants. Mol Biotechnol, 2003, 25: 149-184
[3]  5 Arora R, Agarwal P, Ray S, et al. MADS-box gene family in rice: Genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics, 2007, 8: 242
[4]  6 Riechmann J L, Krizek B A, Meyerowitz E M. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci USA, 1996, 93: 4793-4798
[5]  7 Lohmann J U, Weigel D. Building beauty: The genetic control of floral patterning. Dev Cell, 2002, 2: 135-142
[6]  8 Yamaguchi T, Hirano H Y. Function and diversification of MADS-box genes in rice. Sci World J, 2006, 6: 1923-1932
[7]  9 Lee S, Kim J, Son J S, et al. Systematic reverse genetic screening of T-DNA tagged genes in rice for functional genomic analyses: MADS-box genes as a test case. Plant Cell Physiol, 2003, 44: 1403-1411
[8]  10 Yin L L, Xue H W. The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development. Plant Cell, 2012, 24: 1049-1065
[9]  11 Yang X, Wu F, Lin X, et al. Live and let die-the Bsister MADS-box gene OsMADS29 controls the degeneration of cells in maternal tissues during seed development of rice (Oryza sativa). PLoS One, 2012, 7: e51435
[10]  12 Nayar S, Sharma R, Tyagi A K, et al. Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis. J Exp Bot, 2013, 64: 4239-4253
[11]  13 Nayar S, Kapoor M, Kapoor S. Post-translational regulation of rice MADS29 function: Homodimerization or binary interactions with other seed-expressed MADS proteins modulate its translocation into the nucleus. J Exp Bot, 2014, 65: 5339-5350
[12]  14 Green T W, Hannah L C. Adenosine diphosphate glucose pyrophosphorylase, a rate-limiting step in starch biosynthesis. Physiol Plantarum, 1998, 103: 574-580
[13]  15 Smith-White B J, Preiss J. Comparison of proteins of ADP-glucose pyrophosphorylase from diverse sources. J Mol Evol, 1992, 34: 449-464
[14]  16 Lee S K, Hwang S K, Han M, et al. Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Mol Biol, 2007, 65: 531-546
[15]  17 Yuan D Y, Sun Z Z, Tan Y N, et al. A preliminary analysis of gene expression of seven isoforms of ADP-glucose pyrophosphorylase(AGPase) in rice endosperm under diffierent temperature conditions (in Chinese). Hybrid Rice, 2011, 26: 61-64 [袁定阳, 孙志忠, 谭炎宁, 等. 不同温度下水稻胚乳AGPase各同工酶基因表达特征初步分析. 杂交水稻, 2011, 26: 61-
[16]  18 Underhill D M, Ozinsky A, Smith K D, et al. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci USA, 1999, 96: 14459-14463
[17]  19 Thornberry N A, Lazebnik Y. Caspases: Enemies within. Science, 1998, 281: 1312-1316
[18]  20 Hatsugai N, Kuroyanagi M, Yamada K, et al. A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science, 2004, 305: 855-858
[19]  21 Coll N S, Vercammen D, Smidler A, et al. Arabidopsis type I metacaspases control cell death. Science, 2010, 330: 1393-1397
[20]  22 Sun X, Shantharaj D, Kang X, et al. Transcriptional and hormonal signaling control of Arabidopsis seed development. Curr Opin Plant Biol, 2010, 13: 611-620
[21]  23 Lur H S, Setter T L. Role of auxin in maize endosperm development (timing of nuclear DNA endoreduplication, zein expression, and cytokinin). Plant Physiol, 1993, 103: 273-280
[22]  24 Guo H, Liu X, Lu Y, et al. Structure of mature embryo sac and its abnormal phenomena in autotetraploid rice. Chin J Rice Sci, 2005, 20: 283-289
[23]  25 Li S, Li W, Huang B, et al. Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth. Nat Commun, 2013, 4: 2793
[24]  26 Yang J P. Improvement of traditional paraffin section preparation methods (in Chinese). J Biol, 2006, 23: 45-46 [杨捷频. 常规石蜡切片方法的改良. 生物学杂志, 2006, 23: 45-
[25]  27 Zhao J, Mun W F, Zhang Z X. Improvement of plant paraffin section technical (in Chinese). Anhui Agri Sci Bull, 2009, 15: 69-90 [赵俊, 木万福, 张志星. 植物石蜡切片技术改进. 安徽农学通报, 2009, 15: 69-
[26]  28 Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2-DDCT method. Methods, 2001, 25: 402-408
[27]  29 Liu L. Study on imprinting and expression of endosperm development genes in hybrid offspring from the cross of 2n and 4n rice (in Chinese). Master Dissertation. Sichuan: Sichuan Agricultural University, 2011 [刘磊. 2n与4n水稻杂种幼胚后代印记研究及胚乳发育相关基因的表达分析. 硕士学位论文. 四川: 四川农业大学,
[28]  30 Gu Y J, Xiong F, Wang Z, et al. A contrast of the endosperm development between rice and wheat (in Chinese). J Nanjing Normal Univ, 2001, 24: 65-74 [顾蕴洁, 熊飞, 王忠, 等. 水稻和小麦胚乳发育的比较. 南京师大学报: 自然科学版, 2001, 24: 65-
[29]  31 Nishiyama I, Inomata N. Embryological studies on cross-incompatibility between 2x and 4x in Brassica. Jpn J Genet, 1966, 41: 27-42
[30]  32 Johnston S A, Den Nijs T P M, Peloquin S J, et al. The significance of genic balance to endosperm development in interspecific crosses. Theor Appl Genet, 1980, 57: 5-9
[31]  33 Lin B Y. Ploidy barrier to endosperm development in maize. Genetics, 1984, 107: 103-115
[32]  1 Haig D, Westoby M. Genomic imprinting in endosperm: Its effect on seed development in crosses between species, and between different ploidies of the same species, and its implications for the evolution of apomixis. Philos Trans R Soc B Biol Sci, 1991, 333: 1-13
[33]  2 Scott R J, Spielman M, Bailey J, et al. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development, 1998, 125: 3329-3341

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133