6 Lin Z, Yin K, Shi P, et al. Development of QSARs for predicting the joint effects between cyanogenic toxicants and aldehydes. Chem Res Toxicol, 2003, 16: 1365-1371
[2]
7 Lin Z, Wei D, Wang X, et al. Chemical-chemical interaction between cyanogenic toxicants and aldehydes: A mechanism-based QSAR approach to assess toxicological joint effects. SAR QSAR Environ Res, 2004, 15: 127-138
[3]
8 Lin Z, Wang L, Shi P, et al. Development of a fragment constant method for estimating the mixture toxicity. Arch Environ Contam Toxicol, 2004, 46: 1-7
[4]
9 Lin Z, Shi P, Gao S, et al. Use of partition coefficients to predict mixture toxicity. Water Res, 2003, 37: 2223-2227
[5]
10 Lin Z, Niu X, Wu C, et al. Prediction of the toxicological joint effects between cyanogenic toxicants and aldehydes to Photobacterium phosphoreum. QSAR Comb Sci, 2005, 24: 354-363
[6]
11 Lin Z, Kong D, Zhong P, et al. Influence of hydroxypropylcyclodextrins on the toxicity of mixtures. Chemosphere, 2005, 58: 1301-1306
[7]
12 van Leeuwen C J, van Der Zandt P T J, Aldenberg T, et al. Application of QSARs, extrapolation and equilibrium partitioning in aquatic effects assessment. I. Narcotic industrial pollutants. Environ Toxicol Chem, 1992, 11: 267-282
[8]
13 Altenburger R, Nendza M, Schüürmann G. Mixture toxicity and its modeling by quantitative structure-activity relationships. Environ Toxicol Chem, 2003, 22: 1900-1915
[9]
14 Zeng M, Lin Z, Yin D, et al. QSAR for predicting joint toxicity of halogenated benzenes to Dicrateria zhanjiangensis. Bull Environ Contam Toxicol, 2008, 81: 525-530
[10]
15 Wayne S T, Wyatt N L, Lin D T. Structure-toxicity relationships for nonpolar narcotics: A comparison of data from the tetrahymena, photobacterium and pimephales systems. Bull Environ Contam Toxicol, 1990, 44: 67-72
[11]
16 Wang B, Yu G, Zhang Z L, et al. Quantitative structure-activivty relationship and prediction of mixture toxicity of alkanols. Chin Sci Bull, 2006, 51: 2717-2723
[12]
17 Huang H, Wang X, Shao Y, et al. QSAR for prediction of joint toxicity of substituted phenols to tadpoles (Rana japonica). Bull Environ Contam Toxicol, 2003, 71: 1124-1130
[13]
18 Verhaar H J M, Van Leeuwen C J, Bol J, et al. Application of QSARs in risk management of existing chemicals. SAR QSAR Environ Res, 1994, 2: 39-58
[14]
19 Verhaar H J M, Busser F J, Hermens J L. Surrogate parameter for the baseline toxicity content of contaminated water: Simulating the bio- concentration of mixtures of pollutants and counting molecules. Environ Sci Technol, 1995, 29: 726-734
[15]
20 Wang T, Lin Z, Yin D, et al. Hydrophobicity-dependent QSARs to predict the toxicity of perfluorinated carboxylic acids and their mixtures. Environ Toxicol Pharmacol, 2011, 32: 259-265
[16]
21 Veith G D, Broderius S J. Rules for distinguishing toxicants that cause type I and type II narcosis syndromes. Environ Health Perspect, 1990, 87: 207-211
[17]
22 Feng L, Han S, Zhao Y, et al. Quantification and application of Lewis acidity and Basicity of benzene and its derivates. Toxicol Environ Chem, 1996, 53: 119-126
[18]
23 Lin Z, Zhong P, Yin K, et al. Quantification of joint effect for hydrogen bond and development of QSARs for predicting mixture toxicity. Chemosphere, 2003, 52: 1199-1208
[19]
24 Wang B, Yu G, Hu H, et al. Quantitative structure-activity relationships and mixture toxicity of substituted benzaldehydes to photobacterium phosphoreum. Bull Environ Contam Toxicol, 2007, 78: 503-509
[20]
25 Huang C P, Wang Y J, Chen C Y. Toxicity and quantitative structure-activity relationships of nitriles based on Pseudokirchneriella subcapitata. Ecotox Environ Safe, 2007, 67: 439-446
[21]
26 Warne M S J, Hawker D W. The number of components in a mixture determines whether synergistic and antagonistic or additive toxicity predominate: The funnel hypothesis. Ecotox Environ Safe, 1995, 31: 23-28
[22]
27 Tian D, Lin Z, Yu J, et al. Influence factors of multicomponent mixtures containing reactive chemicals and their joint effects. Chemosphere, 2012, 88: 994-1000
[23]
28 Lin Z, Ping Z, Kong D, et al. The ratios of individual chemicals in a mixture determine the degree of joint effect: The climax hypothesis. Arch Environ Contam Toxicol, 2005, 49: 1-8
[24]
29 Li W, Tian D, Lin Z, et al. Study on the variation rules of the joint effects for multicomponent mixtures containing cyanogenic toxicants and aldehydes based on the transition state theory. J Hazard Mater, 2014, 267: 98-108
[25]
30 Tian D, Lin Z, Zhou X, et al. The underlying toxicological mechanism of chemical mixtures: A case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum. Toxicol Appl Pharmacol, 2013, 272: 551-558
[26]
31 Tian D, Lin Z, Yin D, et al. Atomic charges of individual reactive chemicals in binary mixtures determine their joint effects: An example of cyanogenic toxicants and aldehydes. Environ Toxicol Chem, 2012, 31: 270-278
[27]
32 Yao Z, Lin Z, Wang T, et al. Using molecular docking-based binding energy to predict toxicity of binary mixture with different binding sites. Chemosphere, 2013, 92: 1169-1176
[28]
33 Zou X, Lin Z, Deng Z, et al. The joint effects of sulfonamides and their potentiator on Photobacterium phosphoreum: Differences between the acute and chronic mixture toxicity mechanisms. Chemosphere, 2012, 86: 30-35
[29]
1 Kaiser K L E. The use of neural networks in QSARs for acute aquatic toxicological endpoints. J Mol Struc Theochem, 2003, 622: 85-95
[30]
2 Moridani M Y, Galati G, O'Brien P J. Comparative quantitative structure toxicity relationships for flavonoids evaluated in isolated rat hepatocytes and HeLa tumor cells. Chem Biol Interact, 2002, 139: 251-264
[31]
3 Russom C L, Bradbury S P, Broderius S J, et al. Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas). Environ Toxicol Chem, 1997, 16: 948-967
[32]
4 Lin Z, Yu H, Wei D, et al. Prediction of mixture toxicity with its total hydrophobicity. Chemosphere, 2002, 46: 305-310
[33]
5 Lin Z, Yu H, Gao S, et al. Development of the fragment constant method for estimating the partition coefficients of nonionic organic mixtures. Arch Environ Contam Toxicol, 2001, 41: 255-260