全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

有机污染物的混合毒性QSAR模型及其机制研究进展

DOI: 10.1360/N972014-01380, PP. 1771-1780

Keywords: 混合毒性,毒性作用方式,毒性机制,疏水性,氢键

Full-Text   Cite this paper   Add to My Lib

Abstract:

环境有机污染物的联合暴露是一条普遍规律.化合物定量结构与活性相关研究(quantitativestructure-activityrelationship,QSAR)模型是研究有机污染物毒性的重要方法.本文以有机污染物的混合毒性及其机制研究为主线,将化合物按照毒性作用方式分为3类非极性麻醉型、极性麻醉型和反应性化合物,并概述了3类化合物基于毒性作用机制的混合毒性QSAR模型.简单综述了非极性麻醉型化合物混合毒性的定量预测方法,发现非极性麻醉型化合物的毒性预测方法最为简单,仅由混合体系的总疏水性决定,可通过统一的QSAR模型预测;概述了极性麻醉型化合物混合毒性的定量预测方法,指出极性麻醉型化合物的混合毒性由混合体系总疏水性和氢键效应共同决定;重点解析了反应性化合物的混合毒性QSAR模型,发现由于反应性化合物作用机制较为复杂,目前仍缺乏统一的混合毒性定量预测方法.进一步从混合物组分、化合物之间相互作用和化合物与靶蛋白的相互作用3方面入手,综述了反应性化合物混合毒性QSAR模型的最新研究进展.最后指出,采用基因组学和代谢组学等更为先进的实验手段进一步揭示化合物的分子生物学机制,进而建立更为通用的有机污染物混合毒性预测方法是今后发展的方向.

References

[1]  6 Lin Z, Yin K, Shi P, et al. Development of QSARs for predicting the joint effects between cyanogenic toxicants and aldehydes. Chem Res Toxicol, 2003, 16: 1365-1371
[2]  7 Lin Z, Wei D, Wang X, et al. Chemical-chemical interaction between cyanogenic toxicants and aldehydes: A mechanism-based QSAR approach to assess toxicological joint effects. SAR QSAR Environ Res, 2004, 15: 127-138
[3]  8 Lin Z, Wang L, Shi P, et al. Development of a fragment constant method for estimating the mixture toxicity. Arch Environ Contam Toxicol, 2004, 46: 1-7
[4]  9 Lin Z, Shi P, Gao S, et al. Use of partition coefficients to predict mixture toxicity. Water Res, 2003, 37: 2223-2227
[5]  10 Lin Z, Niu X, Wu C, et al. Prediction of the toxicological joint effects between cyanogenic toxicants and aldehydes to Photobacterium phosphoreum. QSAR Comb Sci, 2005, 24: 354-363
[6]  11 Lin Z, Kong D, Zhong P, et al. Influence of hydroxypropylcyclodextrins on the toxicity of mixtures. Chemosphere, 2005, 58: 1301-1306
[7]  12 van Leeuwen C J, van Der Zandt P T J, Aldenberg T, et al. Application of QSARs, extrapolation and equilibrium partitioning in aquatic effects assessment. I. Narcotic industrial pollutants. Environ Toxicol Chem, 1992, 11: 267-282
[8]  13 Altenburger R, Nendza M, Schüürmann G. Mixture toxicity and its modeling by quantitative structure-activity relationships. Environ Toxicol Chem, 2003, 22: 1900-1915
[9]  14 Zeng M, Lin Z, Yin D, et al. QSAR for predicting joint toxicity of halogenated benzenes to Dicrateria zhanjiangensis. Bull Environ Contam Toxicol, 2008, 81: 525-530
[10]  15 Wayne S T, Wyatt N L, Lin D T. Structure-toxicity relationships for nonpolar narcotics: A comparison of data from the tetrahymena, photobacterium and pimephales systems. Bull Environ Contam Toxicol, 1990, 44: 67-72
[11]  16 Wang B, Yu G, Zhang Z L, et al. Quantitative structure-activivty relationship and prediction of mixture toxicity of alkanols. Chin Sci Bull, 2006, 51: 2717-2723
[12]  17 Huang H, Wang X, Shao Y, et al. QSAR for prediction of joint toxicity of substituted phenols to tadpoles (Rana japonica). Bull Environ Contam Toxicol, 2003, 71: 1124-1130
[13]  18 Verhaar H J M, Van Leeuwen C J, Bol J, et al. Application of QSARs in risk management of existing chemicals. SAR QSAR Environ Res, 1994, 2: 39-58
[14]  19 Verhaar H J M, Busser F J, Hermens J L. Surrogate parameter for the baseline toxicity content of contaminated water: Simulating the bio- concentration of mixtures of pollutants and counting molecules. Environ Sci Technol, 1995, 29: 726-734
[15]  20 Wang T, Lin Z, Yin D, et al. Hydrophobicity-dependent QSARs to predict the toxicity of perfluorinated carboxylic acids and their mixtures. Environ Toxicol Pharmacol, 2011, 32: 259-265
[16]  21 Veith G D, Broderius S J. Rules for distinguishing toxicants that cause type I and type II narcosis syndromes. Environ Health Perspect, 1990, 87: 207-211
[17]  22 Feng L, Han S, Zhao Y, et al. Quantification and application of Lewis acidity and Basicity of benzene and its derivates. Toxicol Environ Chem, 1996, 53: 119-126
[18]  23 Lin Z, Zhong P, Yin K, et al. Quantification of joint effect for hydrogen bond and development of QSARs for predicting mixture toxicity. Chemosphere, 2003, 52: 1199-1208
[19]  24 Wang B, Yu G, Hu H, et al. Quantitative structure-activity relationships and mixture toxicity of substituted benzaldehydes to photobacterium phosphoreum. Bull Environ Contam Toxicol, 2007, 78: 503-509
[20]  25 Huang C P, Wang Y J, Chen C Y. Toxicity and quantitative structure-activity relationships of nitriles based on Pseudokirchneriella subcapitata. Ecotox Environ Safe, 2007, 67: 439-446
[21]  26 Warne M S J, Hawker D W. The number of components in a mixture determines whether synergistic and antagonistic or additive toxicity predominate: The funnel hypothesis. Ecotox Environ Safe, 1995, 31: 23-28
[22]  27 Tian D, Lin Z, Yu J, et al. Influence factors of multicomponent mixtures containing reactive chemicals and their joint effects. Chemosphere, 2012, 88: 994-1000
[23]  28 Lin Z, Ping Z, Kong D, et al. The ratios of individual chemicals in a mixture determine the degree of joint effect: The climax hypothesis. Arch Environ Contam Toxicol, 2005, 49: 1-8
[24]  29 Li W, Tian D, Lin Z, et al. Study on the variation rules of the joint effects for multicomponent mixtures containing cyanogenic toxicants and aldehydes based on the transition state theory. J Hazard Mater, 2014, 267: 98-108
[25]  30 Tian D, Lin Z, Zhou X, et al. The underlying toxicological mechanism of chemical mixtures: A case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum. Toxicol Appl Pharmacol, 2013, 272: 551-558
[26]  31 Tian D, Lin Z, Yin D, et al. Atomic charges of individual reactive chemicals in binary mixtures determine their joint effects: An example of cyanogenic toxicants and aldehydes. Environ Toxicol Chem, 2012, 31: 270-278
[27]  32 Yao Z, Lin Z, Wang T, et al. Using molecular docking-based binding energy to predict toxicity of binary mixture with different binding sites. Chemosphere, 2013, 92: 1169-1176
[28]  33 Zou X, Lin Z, Deng Z, et al. The joint effects of sulfonamides and their potentiator on Photobacterium phosphoreum: Differences between the acute and chronic mixture toxicity mechanisms. Chemosphere, 2012, 86: 30-35
[29]  1 Kaiser K L E. The use of neural networks in QSARs for acute aquatic toxicological endpoints. J Mol Struc Theochem, 2003, 622: 85-95
[30]  2 Moridani M Y, Galati G, O'Brien P J. Comparative quantitative structure toxicity relationships for flavonoids evaluated in isolated rat hepatocytes and HeLa tumor cells. Chem Biol Interact, 2002, 139: 251-264
[31]  3 Russom C L, Bradbury S P, Broderius S J, et al. Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas). Environ Toxicol Chem, 1997, 16: 948-967
[32]  4 Lin Z, Yu H, Wei D, et al. Prediction of mixture toxicity with its total hydrophobicity. Chemosphere, 2002, 46: 305-310
[33]  5 Lin Z, Yu H, Gao S, et al. Development of the fragment constant method for estimating the partition coefficients of nonionic organic mixtures. Arch Environ Contam Toxicol, 2001, 41: 255-260

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133