全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

MOFs作为牺牲模板制备纳米多孔碳材料的方法及其应用

DOI: 10.1360/N972015-00438, PP. 1906-1914

Keywords: 多孔材料,金属有机骨架,煅烧,纳米碳材料

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,多孔材料因具有较高的比表面积、较低的相对密度以及较好的吸附性能等吸引了化学、物理以及材料等领域科研人员的研究兴趣,已被广泛应用于气体储存、吸附催化和电化学等方面.金属有机骨架(MOFs)材料作为近年来迅猛发展的新兴多孔材料,由于具有有序、规整的结构,较高的比表面积以及结构可调等特性,使其较传统多孔材料具有更诱人的应用前景.然而,由于MOFs具有相对较差的稳定性,其实际应用和发展受到了很大的限制.为了进一步推进MOFs材料的应用进程,可利用MOFs材料受热易分解的缺点,将其高温煅烧碳化制备稳定的纳米多孔碳材料.本文综述了MOFs作为牺牲模板煅烧制备纳米多孔碳材料的方法及其应用,并且展望了其在能源、环境以及催化方面的应用前景.

References

[1]  26 Liu B, Shioyama H, Jiang H L, et al. Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon, 2010, 48: 456-463
[2]  27 Jiang H L, Liu B, Lan Y Q, et al. From metal-organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake. J Am Chem Soc, 2011, 133: 11854-11857
[3]  28 Yuan D S, Chen J X, Tan S X, et al. Worm-like mesoporous carbon synthesized from metal-organic coordination polymers for supercapacitors. Electrochem Commun, 2009, 11: 1191-1194
[4]  29 Hu J A, Wang H L, Gao Q M, et al. Porous carbons prepared by using metal-organic framework as the precursor for supercapacitors. Carbon, 2010, 48: 3599-3606
[5]  30 Hu M, Reboul J, Furukawa S, et al. Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. J Am Chem Soc, 2012, 134: 2864-2867
[6]  31 Lim S, Suh K, Kim Y, et al. Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks. Chem Commun, 2012, 48: 7447-7449
[7]  70 Goenaga G, Ma S Q, Yuan S W, et al. New approaches to non-PGM electrocatalysts using porous framework materials. ECS Trans, 2010, 33: 579-586
[8]  71 Ma S Q, Goenaga G A, Call A V, et al. Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts. Chem Eur J, 2011, 17: 2063-2067
[9]  72 Lefevre M, Proietti E, Jaouen F, et al. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science, 2009, 324: 71-74
[10]  73 Zhong W, Liu H, Bai C, et al. Base-free oxidation of alcohols to esters at room temperature and atmospheric conditions using nanoscale Co-based catalysts. ACS Catal, 2015, 5: 1850-1856
[11]  74 Bai C, Yao X, Li Y. Easy access to amides through aldehydic C-H bond functionalization catalyzed by heterogeneous Co-based catalysts. ACS Catal, 2015, 5: 884-891
[12]  75 Long J L, Zhou Y, Li Y W. Transfer hydrogenation of unsaturated bonds in the absence of base additives catalyzed by a cobalt-based heterogeneous catalyst. Chem Commun, 2015, 51: 2331-2334
[13]  4 Kwak G, Kim S Y, Fujiki M, et al. Versatile and facile preparation of chiral polyacetylene-based gel film and organic anorganic composites. Chem Mater, 2004, 16: 1864-1868
[14]  5 Martin R, Buchwald S L. Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Accounts Chem Res, 2008, 41: 1461-1473
[15]  6 Zhou H C, Long J R, Yaghi O M. Introduction to metal-organic frameworks. Chem Rev, 2012, 112: 673-674
[16]  7 Sherry B D, Furstner A. The promise and challenge of iron-catalyzed cross coupling. Accounts Chem Res, 2008, 41: 1500-1511
[17]  8 O'Keeffe M. Design of MOFs and intellectual content in reticular chemistry: A personal view. Chem Soc Rev, 2009, 38: 1215-1217
[18]  9 Tranchemontagne D J, Mendoza-Cortes J L, O'Keeffe M, et al. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem Soc Rev, 2009, 38: 1257-1283
[19]  10 Perry J J, Perman J A, Zaworotko M J. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. Chem Soc Rev, 2009, 38: 1400-1417
[20]  11 Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metal-organic frameworks. Science, 2010, 329: 424-428
[21]  12 Farha O K, Wilmer C E, Eryazici I, et al. Designing higher surface area metal-organic frameworks: Are triple bonds better than phenyls? J Am Chem Soc, 2012, 134: 9860-9863
[22]  13 Farha O K, Eryazici I, Jeong N C, et al. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? J Am Chem Soc, 2012, 134: 15016-15021
[23]  14 Chang C L, Qi X Y, Zhang J W, et al. Facile synthesis of magnetic homochiral metal-organic frameworks for ""enantioselective fishing''. Chem Commun, 2015, 51: 3566-3569
[24]  15 Horcajada P, Gref R, Baati T, et al. Metal-organic frameworks in biomedicine. Chem Rev, 2012, 112: 1232-1268
[25]  16 Horcajada P, Chalati T, Serre C, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater, 2010, 9: 172-178
[26]  20 Chen B L, Yang Y, Zapata F, et al. Luminescent open metal sites within a metal-organic framework for sensing small molecules. Adv Mater, 2007, 19: 1693-1696
[27]  24 Banerjee R, Furukawa H, Britt D, et al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc, 2009, 131: 3875-3877
[28]  25 Liu B, Shioyama H, Akita T, et al. Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc, 2008, 130: 5390-5391
[29]  1 Corbet J P, Mignani G. Selected patented cross-coupling reaction technologies. Chem Rev, 2006, 106: 2651-2710
[30]  2 Wu C Y, Tang Z, Fan W W, et al. In vivo positron emission tomography (PET) imaging of mesenchymal-epithelial transition (MET) receptor. J Med Chem, 2010, 53: 139-146
[31]  3 Pettit G R, Thornhill A, Melody N, et al. Antineoplastic agents. 578. Synthesis of stilstatins 1 and 2 and their water-soluble prodrugs. J Nat Prod, 2009, 72: 380-388
[32]  17 Yang C X, Yan X P. Application of metal-organic frameworks in sample pretreatment. Chin J Anal Chem, 2013, 41: 1297-1301
[33]  18 Yanai N, Kitayama K, Hijikata Y, et al. Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. Nat Mater, 2011, 10: 787-793
[34]  19 Kreno L E, Leong K, Farha O K, et al. Metal-organic framework materials as chemical sensors. Chem Rev, 2012, 112: 1105-1125
[35]  21 Achmann S, Hagen G, Kita J, et al. Metal-organic frameworks for sensing applications in the gas phase. Sensors, 2009, 9: 1574-1589
[36]  22 Li H, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402: 276-279
[37]  23 Comotti A, Bracco S, Sozzani P, et al. Nanochannels of two distinct cross-sections in a porous Al-based coordination polymer. J Am Chem Soc, 2008, 130: 13664-13672
[38]  32 Chaikittisilp W, Ariga K, Yamauchi Y. A new family of carbon materials: Synthesis of MOF-derived nanoporous carbons and their promising applications. J Mater Chem A, 2013, 1: 14-19
[39]  33 Meng Y, Wang G H, Bernt S, et al. Crystal-like microporous hybrid solid nanocast from Cr-MIL-101. Chem Commun, 2011, 47: 10479-10481
[40]  34 Almasoudi A, Mokaya R. Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework. J Mater Chem, 2012, 22: 146-152
[41]  35 Burch H J, Brown E, Contera S A, et al. Effect of acid treatment on the structure and electrical properties of nitrogen-doped multiwalled carbon nanotubes. J Phys Chem C, 2008, 112: 1908-1912
[42]  36 Ramanathan M, Kilbey S M, Ji Q M, et al. Materials self-assembly and fabrication in confined spaces. J Mater Chem, 2012, 22: 10389-10405
[43]  37 Ariga K, Mori T, Hill J P. Mechanical control of nanomaterials and nanosystems. Adv Mater, 2012, 24: 158-176
[44]  38 Davis M E. Ordered porous materials for emerging applications. Nature, 2002, 417: 813-821
[45]  39 Chaikittisilp W, Hu M, Wang H J, et al. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun, 2012, 48: 7259-7261
[46]  40 Yamauchi Y, Suzuki N, Radhakrishnan L, et al. Breakthrough and future: Nanoscale controls of compositions, morphologies, and mesochannel orientations toward advanced mesoporous materials. Chem Rec, 2009, 9: 321-339
[47]  41 Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B, 1999, 103: 7743-7746
[48]  42 Kyotani T, Nagai T, Inoue S, et al. Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chem Mater, 1997, 9: 609-615
[49]  43 Yang H F, Zhao D Y. Synthesis of replica mesostructures by the nanocasting strategy. J Mater Chem, 2005, 15: 1217-1231
[50]  44 Feng D, Lv Y Y, Wu Z X, et al. Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices. J Am Chem Soc, 2011, 133: 15148-15156
[51]  45 Wu Z X, Webley P A, Zhao D Y. Post-enrichment of nitrogen in soft-templated ordered mesoporous carbon materials for highly efficient phenol removal and CO2 capture. J Mater Chem, 2012, 22: 11379-11389
[52]  46 Dhakshinamoorthy A, Garcia H. Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chem Soc Rev, 2012, 41: 5262-5284
[53]  47 Luo Y S, Luo J S, Zhou W W, et al. Controlled synthesis of hierarchical graphene-wrapped TiO2@Co3O4 coaxial nanobelt arrays for high-performance lithium storage. J Mater Chem A, 2013, 1: 273-281
[54]  48 Morris W, Doonan C J, Furukawa H, et al. Crystals as molecules: Postsynthesis covalent functionalization of zeolitic imidazolate frameworks. J Am Chem Soc, 2008, 130: 12626-12627
[55]  49 Das R, Pachfule P, Banerjee R, et al. Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): Finding the border of metal and metal oxides. Nanoscale, 2012, 4: 591-599
[56]  50 Banerjee A, Gokhale R, Bhatnagar S, et al. MOF derived porous carbon-Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent. J Mater Chem, 2012, 22: 19694-19699
[57]  51 Qin F X, Jia S Y, Liu Y, et al. Metal-organic framework as a template for synthesis of magnetic CoFe2O4 nanocomposites for phenol degradation. Mater Lett, 2013, 101: 93-95
[58]  52 Almasoudi A, Mokaya R. Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework. J Mater Chem, 2012, 22: 146-152
[59]  53 Yang S J, Kim T, Im J H, et al. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem Mater, 2012, 24: 464-470
[60]  54 Kim S, Dawson K W, Gelfand B S, et al. Enhancing proton conduction in a metal-organic framework by isomorphous ligand replacement. J Am Chem Soc, 2013, 135: 963-966
[61]  55 Sadakiyo M, Yamada T, Kitagawa H. Rational designs for highly proton-conductive metal-organic frameworks. J Am Chem Soc, 2009, 131: 9906-9907
[62]  56 Lu W B, Qin X Y, Asiri A M, et al. Facile synthesis of novel Ni(II)-based metal-organic coordination polymer nanoparticle/reduced graphene oxide nanocomposites and their application for highly sensitive and selective nonenzymatic glucose sensing. Analyst, 2013, 138: 429-433
[63]  57 Wu R B, Qian X K, Yu F, et al. MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. J Mater Chem A, 2013, 1: 11126-11129
[64]  58 Hu L, Huang Y M, Zhang F P, et al. CuO/Cu2O composite hollow polyhedrons fabricated from metal-organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale, 2013, 5: 4186-4190
[65]  59 Yang S J, Nam S, Kim T, et al. Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework. J Am Chem Soc, 2013, 135: 7394-7397
[66]  60 Zhang L, Wu H B, Madhavi S, et al. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J Am Chem Soc, 2012, 134: 17388-17391
[67]  61 Yan N, Hu L, Li Y, et al. Co3O4 nanocages for high-performance anode material in lithium-ion batteries. J Phys Chem C, 2012, 116: 7227-7235
[68]  62 Liu B, Zhang X B, Shioyama H, et al. Converting cobalt oxide subunits in cobalt metal-organic framework into agglomerated Co3O4 nanoparticles as an electrode material for lithium ion battery. J Power Sources, 2010, 195: 857-861
[69]  63 Li Q, Jiang R R, Dou Y Q, et al. Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor. Carbon, 2011, 49: 1248-1257
[70]  64 Lee S I, Mitani S, Park C W, et al. Electric double-layer capacitance of microporous carbon nano spheres prepared through precipitation of aromatic resin pitch. J Power Sources, 2005, 139: 379-383
[71]  65 Lian K, Tian Q F. Solid asymmetric electrochemical capacitors using proton-conducting polymer electrolytes. Electrochem Commun, 2010, 12: 517-519
[72]  66 Gao H, Lian K. High rate all-solid electrochemical capacitors using proton conducting polymer electrolytes. J Power Sources, 2011, 196: 8855-8857
[73]  67 Deng W T, Ji X B, Chen Q Y, et al. Electrochemical capacitors utilising transition metal oxides: An update of recent developments. RSC Adv, 2011, 1: 1171-1178
[74]  68 Meng F L, Fang Z G, Li Z X, et al. Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors. J Mater Chem A, 2013, 1: 7235-7241
[75]  69 Liang Y Y, Wang H L, Zhou J G, et al. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J Am Chem Soc, 2012, 134: 3517-3523

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133