全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

微管解聚驱动蛋白Kinesin-13的研究进展与展望

DOI: 10.1360/N972015-00357, PP. 1896-1905

Keywords: 微管,解聚,Kinesin-13,有丝分裂,纤毛,磷酸化

Full-Text   Cite this paper   Add to My Lib

Abstract:

微管是细胞骨架的重要组成成分,其在细胞内的动态调节关系着细胞正常生理功能的发挥和维持.目前发现多种参与细胞内微管组装与解聚调控的蛋白,其中发挥微管解聚功能的Kinesin-13驱动蛋白家族被广泛的研究,该蛋白具有控制有丝分裂,调控纤毛组装与解聚和神经轴突发育与修复等功能.本文主要对Kinesin-13微管解聚机制,以及在主要的模式生物中生物学功能与调控机制进行比较与分析.

References

[1]  1 Nogales E. Structural insight into microtubule function. Annu Rev Biophys Biomol Struct, 2001, 30: 397-420
[2]  2 Heald R, Nogales E. Microtubule dynamics. J Cell Sci, 2002, 115: 3-4
[3]  3 Mitchison T J. Localization of an exchangeable GTP binding site at the plus end of microtubules. Science, 1993, 261: 1044-1047
[4]  4 Desai A, Mitchison T J. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol, 1997, 13: 83-117
[5]  5 Gaertig J, Wloga D. Ciliary tubulin and its post-translational modifications. Curr Top Dev Biol, 2008, 85: 83-113
[6]  6 Verhey K J, Dishinger J, Kee H L. Kinesin motors and primary cilia. Biochem Soc Trans, 2011, 39: 1120-1125
[7]  7 Benmerah A. The ciliary pocket. Curr Opin Cell Biol, 2013, 25: 78-84
[8]  8 Walczak C E. Microtubule dynamics and tubulin interacting proteins. Curr Opin Cell Biol, 2000, 12: 52-56
[9]  9 Maccioni R B, Cambiazo V. Role of microtubule-associated proteins in the control of microtubule assembly. Physiol Rev, 1995, 75: 835-864
[10]  10 Roll-Mecak A, Mcnally F J. Microtubule-severing enzymes. Curr Opin Cell Biol, 2010, 22: 96-103
[11]  11 Gouveia S M, Akhmanova A. Cell and molecular biology of microtubule plus end tracking proteins: End binding proteins and their partners. Int Rev Cell Mol Biol, 2010, 285: 1-74
[12]  12 Schuyler S C, Pellman D. Microtubule “plus-end-tracking proteins”: The end is just the beginning. Cell, 2001, 105: 421-424
[13]  13 Verhey K J, Hammond J W. Traffic control: Regulation of kinesin motors. Nat Rev Mol Cell Biol, 2009, 10: 765-777
[14]  14 Hirokawa N, Noda Y, Tanaka Y, et al. Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol, 2009, 10: 682-696
[15]  15 Marx A, Hoenger A, Mandelkow E. Structures of kinesin motor proteins. Cell Motil Cytoskel, 2009, 66: 958-966
[16]  16 Vale R D, Milligan R A. The way things move: Looking under the hood of molecular motor proteins. Science, 2000, 288: 88-95
[17]  17 Gupta M L Jr, Carvalho P, Roof D M, et al. Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nat Cell Biol, 2006, 8: 913-923
[18]  18 Hepperla A J, Willey P T, Coombes C E, et al. Minus-end-directed Kinesin-14 motors align antiparallel microtubules to control metaphase spindle length. Dev Cell, 2014, 31: 61-72
[19]  19 Helenius J, Brouhard G, Kalaidzidis Y, et al. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature, 2006, 441: 115-119
[20]  20 Cooper J R, Wagenbach M, Asbury C L, et al. Catalysis of the microtubule on-rate is the major parameter regulating the depolymerase activity of MCAK. Nat Struct Mol Biol, 2010, 17: 77-82
[21]  21 Ems-Mcclung S C, Hainline S G, Devare J, et al. Aurora B inhibits MCAK activity through a phosphoconformational switch that reduces microtubule association. Curr Biol, 2013, 23: 2491-2499
[22]  22 Desai A, Verma S, Mitchison T J, et al. Kin I kinesins are microtubule-destabilizing enzymes. Cell, 1999, 96: 69-78
[23]  23 Hunter A W, Caplow M, Coy D L, et al. The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP- hydrolyzing complex at microtubule ends. Mol Cell, 2003, 11: 445-457
[24]  24 Wagenbach M, Domnitz S, Wordeman L, et al. A kinesin-13 mutant catalytically depolymerizes microtubules in ADP. J Cell Biol, 2008, 183: 617-623
[25]  25 Mulder A M, Glavis-Bloom A, Moores C A, et al. A new model for binding of kinesin 13 to curved microtubule protofilaments. J Cell Biol, 2009, 185: 51-57
[26]  26 Friel C T, Howard J. The kinesin-13 MCAK has an unconventional ATPase cycle adapted for microtubule depolymerization. Embo J, 2011, 30: 3928-3939
[27]  27 Walczak C E, Gayek S, Ohi R. Microtubule-depolymerizing kinesins. Annu Rev Cell Dev Biol, 2013, 29: 417-441
[28]  28 Moores C A, Yu M, Guo J, et al. A mechanism for microtubule depolymerization by Kin I kinesins. Mol Cell, 2002, 9: 903-909
[29]  29 Ogawa T, Nitta R, Okada Y, et al. A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops. Cell, 2004, 116: 591-602
[30]  30 Ovechkina Y, Wagenbach M, Wordeman L. K-loop insertion restores microtubule depolymerizing activity of a “neckless” MCAK mutant. J Cell Biol, 2002, 159: 557-562
[31]  31 Shipley K, Hekmat-Nejad M, Turner J, et al. Structure of a kinesin microtubule depolymerization machine. Embo J, 2004, 23: 1422-1432
[32]  32 Miki H, Okada Y, Hirokawa N. Analysis of the kinesin superfamily: Insights into structure and function. Trends Cell Biol, 2005, 15: 467-476
[33]  33 Wittmann T, Hyman A, Desai A. The spindle: A dynamic assembly of microtubules and motors. Nat Cell Biol, 2001, 3: E28-E34
[34]  34 Oguchi Y, Uchimura S, Ohki T, et al. The bidirectional depolymerizer MCAK generates force by disassembling both microtubule ends. Nat Cell Biol, 2011, 13: 846-852
[35]  35 Ems-Mcclung S C, Walczak C E. Kinesin-13s in mitosis: Key players in the spatial and temporal organization of spindle microtubules. Semin Cell Dev Biol, 2010, 21: 276-282
[36]  36 Manning A L, Ganem N J, Bakhoum S F, et al. The kinesin-13 proteins Kif2a, Kif2b, and Kif2c/MCAK have distinct roles during mitosis in human cells. Mol Biol Cell, 2007, 18: 2970-2979
[37]  37 Walczak C E, Mitchison T J, Desai A. XKCM1: A Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell, 1996, 84: 37-47
[38]  38 Ohi R, Burbank K, Liu Q, et al. Nonredundant functions of Kinesin-13s during meiotic spindle assembly. Curr Biol, 2007, 17: 953-959
[39]  39 Kline-Smith S L, Walczak C E. The microtubule-destabilizing kinesin XKCM1 regulates microtubule dynamic instability in cells. Mol Biol Cell, 2002, 13: 2718-2731
[40]  40 Maney T, Hunter A W, Wagenbach M, et al. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J Cell Biol, 1998, 142: 787-801
[41]  41 Hood E A, Kettenbach A N, Gerber S A, et al. Plk1 regulates the kinesin-13 protein Kif2b to promote faithful chromosome segregation. Mol Biol Cell, 2012, 23: 2264-2274
[42]  42 Jang C Y, Coppinger J A, Seki A, et al. Plk1 and Aurora A regulate the depolymerase activity and the cellular localization of Kif2a. J Cell Sci, 2009, 122: 1334-1341
[43]  43 Knowlton A L, Vorozhko V V, Lan W, et al. ICIS and Aurora B coregulate the microtubule depolymerase Kif2a. Curr Biol, 2009, 19: 758-763
[44]  44 Andrews P D, Ovechkina Y, Morrice N, et al. Aurora B regulates MCAK at the mitotic centromere. Dev Cell, 2004, 6: 253-268
[45]  45 Lan W, Zhang X, Kline-Smith S L, et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol, 2004, 14: 273-286
[46]  46 Rogers G C, Rogers S L, Schwimmer T A, et al. Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature, 2004, 427: 364-370
[47]  47 Morales-Mulia S, Scholey J M. Spindle pole organization in Drosophila S2 cells by dynein, abnormal spindle protein (Asp), and KLP10A. Mol Biol Cell, 2005, 16: 3176-3186
[48]  48 Delgehyr N, Rangone H, Fu J, et al. Klp10A, a microtubule-depolymerizing kinesin-13, cooperates with CP110 to control Drosophila centriole length. Curr Biol, 2012, 22: 502-509
[49]  49 Fernandez N, Chang Q, Buster D W, et al. A model for the regulatory network controlling the dynamics of kinetochore microtubule plus-ends and poleward flux in metaphase. Proc Natl Acad Sci USA, 2009, 106: 7846-7851
[50]  50 Rath U, Rogers G C, Tan D, et al. The Drosophila kinesin-13, KLP59D, impacts Pacman- and Flux-based chromosome movement. Mol Biol Cell, 2009, 20: 4696-4705
[51]  51 Tikhonenko I, Nag D K, Robinson D N, et al. Microtubule-nucleus interactions in Dictyostelium discoideum mediated by central motor kinesins. Eukaryot Cell, 2009, 8: 723-731
[52]  52 Ishikawa H, Marshall W F. Ciliogenesis: Building the cell's antenna. Nat Rev Mol Cell Biol, 2011, 12: 222-234
[53]  53 Rosenbaum J L, Witman G B. Intraflagellar transport. Nat Rev Mol Cell Biol, 2002, 3: 813-825
[54]  54 Scholey J M. Intraflagellar transport. Annu Rev Cell Dev Biol, 2003, 19: 423-443
[55]  55 Scholey J M. Intraflagellar transport motors in cilia: Moving along the cell's antenna. J Cell Biol, 2008, 180: 23-29
[56]  56 Fox L A, Sawin K E, Sale W S. Kinesin-related proteins in eukaryotic flagella. J Cell Sci, 1994, 107: 1545-1550
[57]  57 Wickstead B, Carrington J T, Gluenz E, et al. The expanded Kinesin-13 repertoire of trypanosomes contains only one mitotic Kinesin indicating multiple extra-nuclear roles. PLoS One, 2010, 5: e15020
[58]  58 Blaineau C, Tessier M, Dubessay P, et al. A novel microtubule-depolymerizing kinesin involved in length control of a eukaryotic flagellum. Curr Biol, 2007, 17: 778-782
[59]  59 Chan K Y, Ersfeld K. The role of the Kinesin-13 family protein TbKif13-2 in flagellar length control of Trypanosoma brucei. Mol Biochem Parasitol, 2010, 174: 137-140
[60]  60 Dubessay P, Blaineau C, Bastien P, et al. Cell cycle-dependent expression regulation by the proteasome pathway and characterization of the nuclear targeting signal of a Leishmania major Kin-13 kinesin. Mol Microbiol, 2006, 59: 1162-1174
[61]  61 Vasudevan K K, Jiang Y Y, Lechtreck K F, et al. Kinesin-13 regulates the quantity and quality of tubulin inside cilia. Mol Biol Cell, 2015, 26: 478-494
[62]  62 Dawson S C, Sagolla M S, Mancuso J J, et al. Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryot Cell, 2007, 6: 2354-2364
[63]  63 Wickstead B, Gull K. A “holistic” kinesin phylogeny reveals new kinesin families and predicts protein functions. Mol Biol Cell, 2006, 17: 1734-1743
[64]  64 Piao T, Luo M, Wang L, et al. A microtubule depolymerizing kinesin functions during both flagellar disassembly and flagellar assembly in Chlamydomonas. Proc Natl Acad Sci USA, 2009, 106: 4713-4718
[65]  65 Wang L, Piao T, Cao M, et al. Flagellar regeneration requires cytoplasmic microtubule depolymerization and kinesin-13. J Cell Sci, 2013, 126: 1531-1540
[66]  66 Hu Z, Liang Y, He W, et al. Cilia disassembly with two distinct phases of regulation. Cell Rep, 2015, doi: 10.1016/j.celrep.2015.02.044.
[67]  91 Ghosh-Roy A, Goncharov A, Jin Y, et al. Kinesin-13 and tubulin posttranslational modifications regulate microtubule growth in axon regeneration. Dev Cell, 2012, 23: 716-728
[68]  92 Schlaitz A L, Srayko M, Dammermann A, et al. The C. elegans RSA complex localizes protein phosphatase 2A to centrosomes and regulates mitotic spindle assembly. Cell, 2007, 128: 115-127
[69]  93 Mennella V, Rogers G C, Rogers S L, et al. Functionally distinct kinesin-13 family members cooperate to regulate microtubule dynamics during interphase. Nat Cell Biol, 2005, 7: 235-245
[70]  94 Moore A T, Rankin K E, Von Dassow G, et al. MCAK associates with the tips of polymerizing microtubules. J Cell Biol, 2005, 169: 391-397
[71]  95 Lu L, Lee Y R, Pan R, et al. An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell, 2005, 16: 811-823
[72]  96 Oda Y, Fukuda H. Rho of plant GTPase signaling regulates the behavior of Arabidopsis kinesin-13A to establish secondary cell wall patterns. Plant Cell, 2013, 25: 4439-4450
[73]  67 Kobayashi T, Tsang W Y, Li J, et al. Centriolar kinesin Kif24 interacts with CP110 to remodel microtubules and regulate ciliogenesis. Cell, 2011, 145: 914-925
[74]  68 Miyamoto T, Hosoba K, Ochiai H, et al. The microtubule-depolymerizing activity of a mitotic kinesin protein KIF2A drives primary cilia disassembly coupled with cell proliferation. Cell Rep, 2015, doi: http://dx.doi.org/10.1016/j.celrep.2015.01.003
[75]  69 Zhang X, Ems-Mcclung S C, Walczak C E. Aurora A phosphorylates MCAK to control ran-dependent spindle bipolarity. Mol Biol Cell, 2008, 19: 2752-2765
[76]  70 Zhang X, Lan W, Ems-Mcclung S C, et al. Aurora B phosphorylates multiple sites on mitotic centromere-associated kinesin to spatially and temporally regulate its function. Mol Biol Cell, 2007, 18: 3264-3276
[77]  71 Braun A, Dang K, Buslig F, et al. Rac1 and Aurora A regulate MCAK to polarize microtubule growth in migrating endothelial cells. J Cell Biol, 2014, 206: 97-112
[78]  72 Knowlton A L, Lan W, Stukenberg P T. Aurora B is enriched at merotelic attachment sites, where it regulates MCAK. Curr Biol, 2006, 16: 1705-1710
[79]  73 Uehara R, Tsukada Y, Kamasaki T, et al. Aurora B and Kif2A control microtubule length for assembly of a functional central spindle during anaphase. J Cell Biol, 2013, 202: 623-636
[80]  74 Sanhaji M, Friel C T, Kreis N N, et al. Functional and spatial regulation of mitotic centromere-associated kinesin by cyclin-dependent kinase 1. Mol Cell Biol, 2010, 30: 2594-2607
[81]  75 Pakala S B, Nair V S, Reddy S D, et al. Signaling-dependent phosphorylation of mitotic centromere-associated kinesin regulates microtubule depolymerization and its centrosomal localization. J Biol Chem, 2012, 287: 40560-40569
[82]  76 Domnitz S B, Wagenbach M, Decarreau J, et al. MCAK activity at microtubule tips regulates spindle microtubule length to promote robust kinetochore attachment. J Cell Biol, 2012, 197: 231-237
[83]  77 Gardner M K, Zanic M, Gell C, et al. Depolymerizing kinesins Kip3 and MCAK shape cellular microtubule architecture by differential control of catastrophe. Cell, 2011, 147: 1092-1103
[84]  78 Tanenbaum M E, Macurek L, Van Der Vaart B, et al. A complex of Kif18b and MCAK promotes microtubule depolymerization and is negatively regulated by Aurora kinases. Curr Biol, 2011, 21: 1356-1365
[85]  79 Wang H, Brust-Mascher I, Civelekoglu-Scholey G, et al. Patronin mediates a switch from kinesin-13-dependent poleward flux to anaphase B spindle elongation. J Cell Biol, 2013, 203: 35-46
[86]  80 Hendershott M C, Vale R D. Regulation of microtubule minus-end dynamics by CAMSAPs and Patronin. Proc Natl Acad Sci USA, 2014, 111: 5860-5865
[87]  81 Welburn J P, Cheeseman I M. The microtubule-binding protein Cep170 promotes the targeting of the kinesin-13 depolymerase Kif2b to the mitotic spindle. Mol Biol Cell, 2012, 23: 4786-4795
[88]  82 Sanhaji M, Friel C T, Wordeman L, et al. Mitotic centromere-associated kinesin (MCAK): A potential cancer drug target. Oncotarget, 2011, 2: 935-947
[89]  83 Tobin J L, Beales P L. The nonmotile ciliopathies. Genet Med, 2009, 11: 386-402
[90]  84 Noda Y, Sato-Yoshitake R, Kondo S, et al. KIF2 is a new microtubule-based anterograde motor that transports membranous organelles distinct from those carried by kinesin heavy chain or KIF3A/B. J Cell Biol, 1995, 129: 157-167
[91]  85 Homma N, Takei Y, Tanaka Y, et al. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell, 2003, 114: 229-239
[92]  86 Poirier K, Lebrun N, Broix L, et al. Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat Genet, 2013, 45: 639-647
[93]  87 Maor-Nof M, Homma N, Raanan C, et al. Axonal pruning is actively regulated by the microtubule-destabilizing protein kinesin superfamily protein 2A. Cell Rep, 2013, 3: 971-977
[94]  88 Noda Y, Niwa S, Homma N, et al. Phosphatidylinositol 4-phosphate 5-kinase a (PIPKa) regulates neuronal microtubule depolymerase kinesin, KIF2A and suppresses elongation of axon branches. Proc Natl Acad Sci USA, 2012, 109: 1725-1730
[95]  89 Eagleson G, Pfister K, Knowlton A L, et al. Kif2a depletion generates chromosome segregation and pole coalescence defects in animal caps and inhibits gastrulation of the Xenopus embryo. Mol Biol Cell, 2015, 26: 924-937
[96]  90 Srayko M, Kaya A, Stamford J, et al. Identification and characterization of factors required for microtubule growth and nucleation in the early C. elegans embryo. Dev Cell, 2005, 9: 223-236

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133