全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

可延展柔性无机电子器件的结构设计力学

DOI: 10.1360/N972014-01414, PP. 2079-2090

Keywords: 可延展柔性电子器件,屈曲,无机半导体材料,薄膜,力学设计

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统的电子器件都是基于无机半导体材料(例如硅),由于其硬、脆的性质使电子器件不能变形,无法满足下一代电子器件在形状可变性尤其是人体适用性上的需求.为突破这一瓶颈,近年来基于无机半导体材料的可延展柔性电子器件凭借其优异的适应变形的能力(可弯曲、扭转、伸缩等)极大拓展了传统无机电子器件的应用范围,备受学术界和电子产业界的瞩目.这种具有可延展柔性的电子器件主要是通过力学结构设计的方法,将无机半导体电子器件置于柔性基体上以实现整体的可弯曲及可延展.本文综述了近年来可延展柔性无机电子器件的结构设计发展,主要针对两类主要的可延展柔性结构波纹结构和岛桥结构,对其力学设计原理和实验结果进行综述,不仅揭示了其变形机理,更重要的是为优化结构设计提供了理论依据.

References

[1]  1 Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327: 1603-1607
[2]  2 Kim D H, Ghaffari R, Lu N, et al. Flexible and stretchable electronics for biointegrated devices. Annu Rev Biomed Eng, 2012, 14: 113-128
[3]  3 Kim D H, Ahn J H, Choi W M, et al. Stretchable and foldable silicon integrated circuits. Science, 2008, 320: 507-511
[4]  4 Ko H C, Stoykovich M P, Song J, et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008, 454: 748-753
[5]  5 Jung I, Xiao J, Malyarchuk V, et al. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proc Natl Acad Sci USA, 2011, 108: 1788-1793
[6]  6 Song Y M, Xie Y, Malyarchuk V, et al. Digital cameras with designs inspired by the arthropod eye. Nature, 2013, 497: 95-99
[7]  7 Kim D H, Lu N, Ma R, et al. Epidermal electronics. Science, 2011, 333: 838-843
[8]  8 Webb R C, Bonifas A P, Behnaz A, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater, 2013, 12: 938-944
[9]  9 Park S I, Xiong Y, Kim R H, et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science, 2009, 325: 977-981
[10]  10 Kim D H, Lu N, Ghaffari R, et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat Mater, 2011, 10: 316-323
[11]  11 Xu S, Zhang Y, Cho J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun, 2013, 4: 1543
[12]  12 Xu S, Zhang Y, Jia L, et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science, 2014, 344: 70
[13]  13 Garnier F. Thin-film transistors based on organic conjugated semiconductors. Chem Phys, 1998, 227: 253-262
[14]  14 Crone B, Dodabalapur A, Lin Y Y, et al. Large-scale complementary integrated circuits based on organic transistors. Nature, 2000, 403: 521-523
[15]  15 Loo Y L, Someya T, Baldwin K W, et al. Soft, conformable electrical contacts for organic semiconductors: high-resolution plastic circuits by lamination. Proc Natl Acad Sci USA, 2002, 99: 10252-10256
[16]  16 Kim D H, Ghaffari R, Lu N, et al. Flexible and stretchable electronics for biointegrated devices. Annu Rev Biomed Eng, 2012, 14: 113-128
[17]  17 Kim D H, Song J, Choi W M, et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci USA, 2008, 105: 18675-18680
[18]  18 Chen X, Hutchinson J W. Herringbone buckling patterns of compressed thin films on compliant substrates. J Appl Mech-T ASME, 2004, 71: 597-603
[19]  19 Huang Z Y, Hong W, Suo Z. Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J Mech Phys Solids, 2005, 53: 2101-2118
[20]  20 Song J, Jiang H, Huang Y, et al. Mechanics of stretchable inorganic electronic materials. J Vac Sci Technol A, 2009, 27: 1107-1125
[21]  21 Stafford C M, Vogt B D, Harrison C, et al. Elastic moduli of ultrathin amorphous polymer films. Macromolecules, 2006, 39: 5095-5099
[22]  22 Jiang H, Khang D Y, Song J, et al. Finite deformation mechanics in buckled thin films on compliant supports. Proc Natl Acad Sci USA, 2007, 104: 15607-15612
[23]  23 Song J, Jiang H, Liu Z, et al. Buckling of a stiff thin film on a compliant substrate in large deformation. Int J Solids Struct, 2008, 45: 3107-3121
[24]  24 Cheng H, Song J. A simply analytic study of buckled thin films on compliant substrates. J Appl Mech-T ASME, 2014, 81: 024501
[25]  25 Jiang H, Khang D Y, Fei H, et al. Finite width effect of thin-films buckling on compliant substrate: Experimental and theoretical studies. J Mech Phys Solids, 2008, 56: 2585-2598
[26]  26 Koh C T, Liu Z J, Khang D Y, et al. Edge effects in buckled thin films on elastomeric substrates. Appl Phys Lett, 2007, 91: 133113
[27]  27 Lacour S P, Jones J, Wanger S, et al. Stretchable interconnects for elastic electronic surfaces. Proc IEEE, 2005, 93: 1459-1467
[28]  28 Song J, Huang Y, Xiao J, et al. Mechanics of non-coplanar mesh design for stretchable electronic circuits. J Appl Phys, 2009, 105: 123516
[29]  29 Chen C, Tao W, Liu Z J, et al. Controlled buckling of thin film on elastomeric substrate in large deformation. Theor Appl Mech Lett, 2011, 1: 021001
[30]  30 Li R, Li M, Su Y, et al. An analytical mechanics model for the island-bridge structures of stretchable electronics. Soft Matter, 2013, 9: 8476-8482
[31]  31 Su Y, Wu J, Fan Z, et al. Postbuckling analysis and its application to stretchable electronics. J Mech Phys Solids, 2012, 60: 484-508
[32]  32 Chen C, Tao W, Su Y, et al. Lateral buckling of interconnects in a non-coplanar mesh design for stretchable electronics. J Appl Mech-T ASME, 2013, 80: 041031
[33]  33 Wu J, Liu Z J, Song J, et al. Stretchability of encapsulated electronics. Appl Phys Lett, 2011, 99: 061911
[34]  34 Zhang Y, Xu S, Fu H, et al. Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter, 2013, 9: 8062
[35]  35 Zhang Y, Fu H, Xu S, et al. A hierarchical computational model for stretchable interconnects with fractal-inspired designs. J Mech Phys Solids, 2014, 72: 115

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133