34 Xu P, Zhang X, Wang X, et al. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet, 2014, 46: 1212-1219
[2]
35 Wu C W, Zhang D, Kan M Y, et al. The draft genome of the large yellow croaker reveals well-developed innate immunity. Nat Commun, 2014, 5: 5227-5234
[3]
36 Ao J, Mu Y, Xiang L X, et al. Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation. PLoS Genet, 2015, 11: e1005118
[4]
37 Wang Y, Lu Y, Zhang Y, et al. The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nat Genet, 2015, 47: 625-631
[5]
38 Collard B C, Mackill D J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci, 2008, 363: 557-572
[6]
39 Varshney R K, Graner A, Sorrells M E. Genomics-assisted breeding for crop improvement. Trends Plant Sci, 2005, 10: 621-630
[7]
40 Tester M. Breeding technologies to increase crop production in a changing world. Science, 2010, 327: 818-822
[8]
41 Xue Y, Zhong K, Han B, et al. New chapter of designer breeding in china: Update on strategic program of molecular module-based designer breeding systems. Bull Chin Acad Sci, 2015, 30: 393-402 [薛勇彪, 种康, 韩斌, 等. 开启中国设计育种新篇章: “分子模块设计育种创新体系”战略性先导科技专项及进展. 中国科学院院刊, 2015, 30: 393-
[9]
42 Wang S, Meyer E, McKay J, et al. 2b-RAD: A simple and flexible method for genome-wide genotyping. Nat Methods 2012, 9: 808-810
[10]
43 Jiao W, Fu X, Dou J, et al. High-resolution linkage and quantitative trait locus mapping aided by genome survey sequencing: Building up an integrative genomic framework for a bivalve mollusk. DNA Res, 2014, 21: 85-101
[11]
44 Tang Q S. Report on Innovation-Driven Strategies in Chinese Aquaculture Seeds. Beijing: Science Press, 2014 [唐启升. 中国水产种业创新驱动发展战略研究报告. 北京: 科学出版社,
[12]
45 Gui J F, Zhu Z Y. Molecular basis and genetic improvement of economically important traits in aquaculture animals. Chin Sci Bull, 2012, 57: 1751-1760
[13]
46 Kirpichnikov V S. Genetic Basis of Fish Selection. Berlin: Springer-Verlag, 1981
[14]
47 Gjedrem T. Genetic improvement for the development of efficient global aquaculture: A personal opinion review. Aquaculture, 2012, 344-349: 12-22
[15]
48 Gjedrem T, Robinson N, Rye M. The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture, 2012, 350-353: 117-129
[16]
49 Gjedrem T. Disease resistant fish and shellfish are within reach: A review. J Mar Sci Eng, 2015, 3: 146-153
[17]
50 Fuji K, Hasegawa O, Honda K, et al. Marker-assisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys olivaceus). Aquaculture, 2007, 272: 291-295
[18]
51 Ozaki A, Araki K, Okamoto H, et al. Progress of DNA marker-assisted breeding in maricultured finfish. Bull Fish Res Agency (Jpn.), 2012, 35: 31-37
[19]
52 Magnadóttir B. Innate immunity of fish (overview). Fish Shellfish Immunol, 2006, 20: 137-151
[20]
53 Ellis A E. Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol, 2001, 25: 827-839
[21]
54 Robertsen B. The interferon system of teleost fish. Fish Shellfish Immunol, 2006, 20: 172-191
[22]
55 Zhang Y B, Gui J F. Molecular regulation of interferon antiviral response in fish. Dev Comp Immunol, 2012, 38: 193-202
[23]
56 Zhu L, Nie L, Zhu G, et al. Advances in research of fish immune-relevant genes: A comparative overview of innate and adaptive immunity in teleosts. Dev Comp Immunol, 2013, 39: 39-62
[24]
57 Jancovich J K, Chinchar V G, Hyatt A, et al. Family Iridoviridae. In: King A M Q, Lefkowitz E, Adams M J, et al., eds. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. SanDiego: Elsevier, 2011. 193-210
[25]
58 Jancovich J K, Qin Q, Zhang Q Y, et al. Ranavirus replication: molecular, cellular, and immunological events. In: Gray M J, Chinchar V G, eds. Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates. New York: Springer, 2015
[26]
59 Van Muiswinkei W B, Nakao M. A short history of research on immunity to infectious diseases in fish. Dev Comp Immunol, 2014, 43: 130-150
[27]
60 Zhang Q Y, Xiao F, Xie J, et al. Complete genome sequence of lymphocystis disease virus (LCDV-C) isolated from China. J Virol, 2004, 78: 6982-6994
[28]
61 Zhu R, Zhang Y B, Zhang Q Y, et al. Functional domains and the antiviral effect of the dsRNA-dependent protein kinase PKR from Paralichthys olivaceu. J Virol, 2008, 82: 6889-6901
[29]
62 Sun F, Zhang Y B, Liu T K, et al. Characterization of fish IRF3 as an IFN-inducible protein reveals evolving regulation of IFN response in vertebrates. J Immunol, 2010, 185: 7573-7582
[30]
63 Sun F, Zhang Y B, Liu T K, et al. Fish MITA activation serves as a mediator for distinct fish IFN gene activation dependent on IRF3 or IRF7. J Immunol, 2011, 187: 2531-2539
[31]
64 Liu T K, Zhang Y B, Liu Y, et al. Cooperative roles of fish PKZ and PKR in IFN-mediated antiviral response. J Virol, 2011, 85: 12769-12780
[32]
65 Gao E B, Gui J F, Zhang Q Y, A novel cyanophage with cyanobacterial non-bleaching protein A gene in the genome. J Virol, 2012, 86: 236-245
[33]
66 Li S, Lu L F, Feng H, et al. IFN regulatory factor 10 is a negative regulator of the IFN responses in fish. J Immunol, 2014, 193: 1100-1109
[34]
67 Feng H, Zhang Y, Zhang Q, et al. Zebrafish IRF1 regulates IFN antiviral response through binding to IFNφ1 and IFNφ3 promoters downstream of MyD88 signaling. J Immunol, 2015, 194: 1225-1238
[35]
68 Brown L R. Plan B2.0: Rescuing a Planet Under Stress and a Civilization in Trouble. Washington, DC: Earth Policy Institute, International Publishers, 2006
[36]
69 Larsen J, Roney M. Farmed Fish Production Overtakes Beef. Earth Policy Institute, Retrieved from http: //www.earth-policy.org/ plan_b_updates/2013/update114
[37]
70 Naylor R L, Goldburg R J, Primavera J H, et al. Effect of aquaculture on world fish supplies. Nature, 2000, 405: 1017-1024
[38]
71 Pauly D, Christensen V, Guénette S, et al. Towards sustainability in world fisheries. Nature, 2002, 418: 689-695
[39]
72 James H T, Geoff L A. Fishes as food: Aquaculture's contribution. EMBO Rep, 2001, 21: 958-963
[40]
73 Béné C, Barange M, Subasinghe R, et al. Feeding 9 billion by 2050-Putting fish back on the menu. Food Secur, 2015, 7: 261-274
[41]
74 Villasante S, Rodriguez-Gonzalez D, Antelo M, et al. All fish for China? Ambio, 2013, 42: 923-936
[42]
75 Cao L, Naylor R, Henriksson P, et al. China's aquaculture and the world's wild fisheries. Science, 2015, 347: 133-135
[43]
76 FAO. The State of World Fisheries and Aquaculture 2014, Rome, 2014
[44]
1 Streisinger G, Walker C, Dower N, et al. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature, 1981, 291: 293-296
[45]
2 Kahn P. Zebrafish hit the big time. Science, 1994, 264: 904-905
[46]
3 Kirchmaier S, Naruse K, Wittbrodt J, et al. The genomic and genetic toolbox of the teleost medaka (Oryzias latipes). Genetics, 2015, 199: 905-918
[47]
4 Braasch I, Peterson S M, Desvignes T, et al. A new model army: Emerging fish models to study the genomics of vertebrate Evo-Devo. J Exp Zool B Mol Dev Evol. 2015, 324: 316-341
[48]
5 Scholz S, Mayer I. Molecular biomarkers of endocrine disruption in small model fish. Mol Cell Endocrinol, 2008, 293: 57-70
[49]
6 Jones F C, Grabherr M G, Chan Y F, et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature, 2012, 484: 55-61
[50]
7 Kornfield I, Smith P F. African cichlid fishes: Model systems for evolutionary biology. Annu Rev Ecol Syst, 2000, 31: 163-196
[51]
8 Kocher T D. Adaptive evolution and explosive speciation: The cichlid fish model. Nat Rev Gen, 2004, 5: 288-298
[52]
9 Christoffels A, Koh E G L, Chia J, et al. Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol, 2004, 21: 1146-1151
[53]
10 Berthelot C, Brunet F, Chalopin D, et al. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun, 2014, 5: 3657
[54]
11 Zhong X, Xu Y, Liang Y, et al. The Chinese rare minnow (Gobiocypris rarus) as an in vivo model for endocrine disruption in freshwater teleosts: A full life-cycle test with diethylstilbestrol. Aquat Toxicol, 2005, 71: 85-95
[55]
12 Zhang Q Y, Gui J F. Atlas of Aquatic Viruses and Viral Diseases. Beijing: Science Press, 2012 [张奇亚, 桂建芳. 水生病毒及病毒病图鉴. 北京: 科学出版社,
[56]
13 Gui J F, Zhou L. Genetic basis and breeding application of clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio. Sci China Life Sci, 2010, 53: 409-415 [桂建芳, 周莉. 多倍体银鲫克隆多样性和双重生殖方式的遗传基础和育种应用. 中国科学: 生命科学, 2010, 40: 97-
[57]
14 Liu S J. Distant hybridization leads to different ploidy fishes. Sci China Life Sci, 2010, 53: 416-425 [刘少军. 远缘杂交导致不同倍性鱼的形成. 中国科学: 生命科学, 2010, 40: 104-
[58]
15 Song C, Liu S J, Xiao J, et al. Polyploid organisms. Sci China Life Sci, 2012, 55: 301-311 [宋灿, 刘少军, 肖军, 等. 多倍体生物研究进展. 中国科学: 生命科学, 2012, 42: 173-
[59]
16 Jiang F F, Wang Z W, Zhou L, et al. High male incidence and evolutionary implications of triploid form in northeast Asia Carassius auratus complex. Mol Phylogenet Evol, 2013, 66: 350-359
[60]
17 Li X Y, Zhang X J, Li Z, et al. Evolutionary history of two divergent Dmrt1 genes reveals two rounds of polyploidy origins in gibel carp. Mol Phylogenet Evol, 2014, 78: 96-104
[61]
18 Zhang J, Sun M, Zhou L, et al. Meiosis completion and various sperm responses lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio. Sci Rep, 2015, 5: 10898
[62]
19 Gui J F. Fish biology and biotechnology is the source for sustainable aquaculture. Sci China Life Sci, 2015, 58: 121-123 [桂建芳. 鱼类生物学和生物技术是水产养殖可持续发展的源泉. 中国科学: 生命科学, 2014, 44: 1195-
[63]
20 Wang D, Mao H L, Chen H X, et al. Isolation of Y-and X-linked SCAR markers in yellow catfish and application in the production of all-male populations. Anim Genet, 2009, 40: 978-981
[64]
21 Liu H Q, Guan B, Xu J, et al. Genetic manipulation of sex ratio for the large-scale breeding of YY super-male and XY all-male yellow catfish (Pelteobagrus fulvidraco (Richardson)). Mar Biotechnol, 2013, 15: 321-328
[65]
22 Dan C, Mei J, Wang D, et al. Genetic differentiation and efficient sex-specific marker development of a pair of Y-and X-linked markers in yellow catfish. Int J Biol Sci, 2013, 9: 1043-1049
[66]
23 Pan Z J, Li X Y, Zhou F J, et al. Identification of sex-specific markers reveals male heterogametic sex determination in Pseudobagrus ussuriensis. Mar Biotechnol, 2015, 17: 441-451
[67]
24 Mei J, Gui J F. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish. Sci China Life Sci, 2015, 58: 124-136 [梅洁, 桂建芳. 鱼类性别异形和性别决定的遗传基础及其生物技术操控. 中国科学: 生命科学, 2014, 44: 1198-
[68]
25 Dai X Y, Zhang W, Zhuo Z J, et al. Neuroendocrine regulation of somatic growth in fishes. Sci China Life Sci, 2015, 58: 137-147 [代向燕, 张玮, 卓子见, 等. 鱼类生长的神经内分泌调控. 中国科学: 生命科学, 2014, 44: 1213-
[69]
26 Xiao W H. The hypoxia signaling pathway and hypoxic adaptation in fishes. Sci China Life Sci, 2015, 58: 148-155 [肖武汉. 低氧信号传导途径与鱼类低氧适应. 中国科学: 生命科学, 2014, 44: 1227-
[70]
27 Zhang Q Y, Gui J F. Virus genomes and virus-host interactions in aquaculture animals. Sci China Life Sci, 2015, 58: 156-169 [张奇亚, 桂建芳. 水产动物的病毒基因组及其病毒与宿主的相互作用. 中国科学: 生命科学, 2014, 44: 1236-
[71]
28 Ye D, Zhu Z Y, Sun Y H. Fish genome manipulation and directional breeding. Sci China Life Sci, 2015, 58: 170-177 [叶鼎, 朱作言, 孙永华. 鱼类基因组操作与定向育种. 中国科学: 生命科学, 2014, 44: 1253-
[72]
29 Tong J G, Sun X W. Genetic and genomic analyses for economically important traits and their applications in molecular breeding of cultured fish. Sci China Life Sci, 2015, 58: 178-186 [童金苟, 孙效文. 鱼类经济性状遗传解析及分子育种应用研究. 中国科学: 生命科学, 2014, 44: 1262-
[73]
30 Xu K, Duan W, Xiao J, et al. Development and application of biological technologies in fish genetic breeding. Sci China Life Sci, 2015, 58: 187-201 [徐康, 段巍, 肖军, 等. 鱼类遗传育种中生物学方法的应用及研究进展. 中国科学: 生命科学, 2014, 44: 1272-
[74]
31 Gui J F. Fish biology and biotechnology is the source for sustainable aquaculture. Sci China Life Sci, 2015, 58: 121-123 [桂建芳. 鱼类生物学和生物技术是水产养殖可持续发展的源泉. 中国科学: 生命科学, 2014, 44: 1195-
[75]
32 Zhang G, Fang X, Guo X, et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 2012, 490: 49-54
[76]
33 Chen S, Zhang G, Shao C, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet, 2014, 46: 253-260