1 Finger F P, Hughes T E, Novick P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell, 1998, 92: 559-571
[2]
2 Guo W, Roth D, Walch-Solimena C, et al. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J, 1999, 18: 1071-1080
[3]
3 Boyd C, Hughes T, Pypaert M, et al. Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. J Cell Biol, 2004, 167: 889-901
[4]
4 Tsuboi T, Ravier M A, Xie H, et al. Mammalian exocyst complex is required for the docking step of insulin vesicle exocytosis. J Biol Chem, 2005, 280: 25565-25570
[5]
5 Kee Y, Yoo J S, Hazuka C D, et al. Subunit structure of the mammalian exocyst complex. Proc Natl Acad Sci USA, 1997, 94: 14438-14443
[6]
6 Elias M, Drdova E, Ziak D, et al. The exocyst complex in plants. Cell Biol Int, 2003, 27: 199-201
[7]
7 Chong Y T, Gidda S K, Sanford C, et al. Characterization of the Arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies. New Phytol, 2010, 185: 401-419
[8]
8 He B, Xi F, Zhang X, et al. Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J, 2007, 26: 4053-4065
[9]
9 Zhang X, Orlando K, He B, et al. Membrane association and functional regulation of Sec3 by phospholipids and Cdc42. J Cell Biol, 2008, 180: 145-158
[10]
10 Li S, van Os G M, Ren S, et al. Expression and functional analyses of EXO70 genes in Arabidopsis implicate their roles in regulating cell type-specific exocytosis. Plant Physiol, 2010, 154: 1819-1830
[11]
11 Dellago H, Loscher M, Ajuh P, et al. Exo70, a subunit of the exocyst complex, interacts with SNEV(hPrp19/hPso4) and is involved in pre-mRNA splicing. Biochem J, 2011, 438: 81-91
[12]
12 Synek L, Schlager N, Elias M, et al. AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J, 2006, 48: 54-72
[13]
17 Zhang L, Jin L G, Luo L, et al. Analysis of nuclear gene codon bias on soybean genome and transcriptome (in Chinese). Acta Agron Sin, 2011, 37: 965-974 [张乐, 金龙国, 罗玲, 等. 大豆基因组和转录组的核基因密码子使用偏好性分析. 作物学报, 2011, 37: 965-
[14]
18 Wright F. The "effective number of codons" used in a gene. Gene, 1990, 87: 23-29
[15]
19 Gupta S K, Bhattacharyya T K, Ghosh T C. Synonymous codon usage in Lactococcus lactis: Mutational bias versus translational selection. J Biomol Struct Dyn, 2004, 21: 527-536
[16]
20 Sharp P M, Tuohy T M, Mosurski K R. Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res, 1986, 14: 5125-5143
[17]
21 Liu Q, Feng Y, Xue Q. Analysis of factors shaping codon usage in the mitochondrion genome of Oryza sativa. Mitochondrion, 2004, 4: 313-320
[18]
22 Sau K, Gupta S K, Sau S, et al. Factors influencing synonymous codon and amino acid usage biases in Mimivirus. Biosystems, 2006, 85: 107-113
[19]
23 Wang X, Wang H, Wang J, et al. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet, 2011, 43: 1035-1039
[20]
24 Liu S, Liu Y, Yang X, et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun, 2014, 5: 3930
[21]
25 von Samson-Himmelstjerna G, Harder A, Failing K, et al. Analysis of codon usage in beta-tubulin sequences of helminths. Parasitol Res, 2003, 90: 294-300
[22]
26 Peixoto L, Zavala A, Romero H, et al. The strength of translational selection for codon usage varies in the three replicons of Sinorhizobium meliloti. Gene, 2003, 320: 109-116
[23]
27 Romero H, Zavala A, Musto H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res, 2000, 28: 2084-2090
[24]
28 Ming R, Hou S, Feng Y, et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452: 991-996
[25]
29 Rensing S A, Lang D, Zimmer A D, et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science, 2008, 319: 64-69
[26]
30 Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408: 796-815
[27]
31 Grantham R, Gautier C, Gouy M, et al. Codon catalog usage and the genome hypothesis. Nucleic Acids Res, 1980, 8: r49-r62
[28]
32 Bulmer M. The selection-mutation-drift theory of synonymous codon usage. Genetics, 1991, 129: 897-907
[29]
33 Sharp P M, Stenico M, Peden J F, et al. Codon usage: Mutational bias, translational selection, or both? Biochem Soc Trans, 1993, 21: 835-841
[30]
34 Chen S L, Lee W, Hottes A K, et al. Codon usage between genomes is constrained by genome-wide mutational processes. Proc Natl Acad Sci USA, 2004, 101: 3480-3485
[31]
35 Francino M P, Ochman H. Deamination as the basis of strand-asymmetric evolution in transcribed Escherichia coli sequences. Mol Biol Evol, 2001, 18: 1147-1150
[32]
36 Lobry J R. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol, 1996, 13: 660-665
[33]
37 Duret L, Mouchiroud D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci USA, 1999, 96: 4482-4487
[34]
38 Qiu S, Bergero R, Zeng K, et al. Patterns of codon usage bias in Silene latifolia. Mol Biol Evol, 2011, 28: 771-780
[35]
39 Shah P, Gilchrist M A. Explaining complex codon usage patterns with selection for translational efficiency, mutation bias, and genetic drift. Proc Natl Acad Sci USA, 2011, 108: 10231-10236
[36]
40 Duret L. Evolution of synonymous codon usage in metazoans. Curr Opin Genet Dev, 2002, 12: 640-649
[37]
41 Plotkin J B, Robins H, Levine A J. Tissue-specific codon usage and the expression of human genes. Proc Natl Acad Sci USA, 2004, 101: 12588-12591
[38]
42 Zhang L, Li W H. Mammalian housekeeping genes evolve more slowly than tissue-specific genes. Mol Biol Evol, 2004, 21: 236-239
[39]
43 Mukhopadhyay P, Basak S, Ghosh T C. Differential selective constraints shaping codon usage pattern of housekeeping and tissue-specific homologous genes of rice and Arabidopsis. DNA Res, 2008, 15: 347-356
[40]
13 ?ársky V, Cvr?ková F, Potocky M, et al. Exocytosis and cell polarity in plants—exocyst and recycling domains. New Phytol, 2009, 183: 255-272
[41]
14 Yang K, Zhang Y, Lü J, et al. Comparison of EXO70 duplication between Arabidopsis thaliana and Oryza sativa (in Chinese). Chin Sci Bull, 2015, 60: 38-51 [杨昆, 张毅, 吕俊, 等. EXO70在拟南芥和水稻基因组中的倍增. 科学通报, 2015, 60: 38-
[42]
15 Zhang J Z. Evolution by gene duplication: An update. Trends Ecol Evol, 2003, 18: 292-298
[43]
16 Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731-2739