全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

EXO70基因在甘蓝和白菜基因组中的倍增与趋异进化

DOI: 10.1360/N972014-01140, PP. 2304-2314

Keywords: EXO70,pfam03081,基因倍增,趋异进化

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探明EXO70基因在白菜和甘蓝基因组中的倍增,从BRAD数据库中分别搜索并鉴定出39和45种不同的EXO70基因.分析发现,同种EXO70及其编码基因在白菜和甘蓝中极度保守,不同类型EXO70的氨基酸组成存在差异,pfam03081是每个EXO70蛋白所共有;不同EXO70基因的外显子数目差异明显,尤以EXO70A的外显子数目最多;BoEXO70在进化过程中发生了较BrEXO70程度更高的DNA丢失情况;白菜和甘蓝EXO70基因总的密码子偏性近乎相同,而不同类EXO70基因之间的密码子使用却出现程度不同的差异.得出推论,尽管EXO70基因在两物种中拥有近乎相同的倍增模式,它在甘蓝中的倍增程度高于白菜;同种类型的EXO70基因在白菜和甘蓝中高度保守,pfam03081是决定EXO70蛋白功能的关键因素;EXO70基因在两个物种内的倍增表现出趋异的进化.

References

[1]  1 Finger F P, Hughes T E, Novick P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell, 1998, 92: 559-571
[2]  2 Guo W, Roth D, Walch-Solimena C, et al. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J, 1999, 18: 1071-1080
[3]  3 Boyd C, Hughes T, Pypaert M, et al. Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. J Cell Biol, 2004, 167: 889-901
[4]  4 Tsuboi T, Ravier M A, Xie H, et al. Mammalian exocyst complex is required for the docking step of insulin vesicle exocytosis. J Biol Chem, 2005, 280: 25565-25570
[5]  5 Kee Y, Yoo J S, Hazuka C D, et al. Subunit structure of the mammalian exocyst complex. Proc Natl Acad Sci USA, 1997, 94: 14438-14443
[6]  6 Elias M, Drdova E, Ziak D, et al. The exocyst complex in plants. Cell Biol Int, 2003, 27: 199-201
[7]  7 Chong Y T, Gidda S K, Sanford C, et al. Characterization of the Arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies. New Phytol, 2010, 185: 401-419
[8]  8 He B, Xi F, Zhang X, et al. Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J, 2007, 26: 4053-4065
[9]  9 Zhang X, Orlando K, He B, et al. Membrane association and functional regulation of Sec3 by phospholipids and Cdc42. J Cell Biol, 2008, 180: 145-158
[10]  10 Li S, van Os G M, Ren S, et al. Expression and functional analyses of EXO70 genes in Arabidopsis implicate their roles in regulating cell type-specific exocytosis. Plant Physiol, 2010, 154: 1819-1830
[11]  11 Dellago H, Loscher M, Ajuh P, et al. Exo70, a subunit of the exocyst complex, interacts with SNEV(hPrp19/hPso4) and is involved in pre-mRNA splicing. Biochem J, 2011, 438: 81-91
[12]  12 Synek L, Schlager N, Elias M, et al. AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J, 2006, 48: 54-72
[13]  17 Zhang L, Jin L G, Luo L, et al. Analysis of nuclear gene codon bias on soybean genome and transcriptome (in Chinese). Acta Agron Sin, 2011, 37: 965-974 [张乐, 金龙国, 罗玲, 等. 大豆基因组和转录组的核基因密码子使用偏好性分析. 作物学报, 2011, 37: 965-
[14]  18 Wright F. The "effective number of codons" used in a gene. Gene, 1990, 87: 23-29
[15]  19 Gupta S K, Bhattacharyya T K, Ghosh T C. Synonymous codon usage in Lactococcus lactis: Mutational bias versus translational selection. J Biomol Struct Dyn, 2004, 21: 527-536
[16]  20 Sharp P M, Tuohy T M, Mosurski K R. Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res, 1986, 14: 5125-5143
[17]  21 Liu Q, Feng Y, Xue Q. Analysis of factors shaping codon usage in the mitochondrion genome of Oryza sativa. Mitochondrion, 2004, 4: 313-320
[18]  22 Sau K, Gupta S K, Sau S, et al. Factors influencing synonymous codon and amino acid usage biases in Mimivirus. Biosystems, 2006, 85: 107-113
[19]  23 Wang X, Wang H, Wang J, et al. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet, 2011, 43: 1035-1039
[20]  24 Liu S, Liu Y, Yang X, et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun, 2014, 5: 3930
[21]  25 von Samson-Himmelstjerna G, Harder A, Failing K, et al. Analysis of codon usage in beta-tubulin sequences of helminths. Parasitol Res, 2003, 90: 294-300
[22]  26 Peixoto L, Zavala A, Romero H, et al. The strength of translational selection for codon usage varies in the three replicons of Sinorhizobium meliloti. Gene, 2003, 320: 109-116
[23]  27 Romero H, Zavala A, Musto H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res, 2000, 28: 2084-2090
[24]  28 Ming R, Hou S, Feng Y, et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452: 991-996
[25]  29 Rensing S A, Lang D, Zimmer A D, et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science, 2008, 319: 64-69
[26]  30 Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408: 796-815
[27]  31 Grantham R, Gautier C, Gouy M, et al. Codon catalog usage and the genome hypothesis. Nucleic Acids Res, 1980, 8: r49-r62
[28]  32 Bulmer M. The selection-mutation-drift theory of synonymous codon usage. Genetics, 1991, 129: 897-907
[29]  33 Sharp P M, Stenico M, Peden J F, et al. Codon usage: Mutational bias, translational selection, or both? Biochem Soc Trans, 1993, 21: 835-841
[30]  34 Chen S L, Lee W, Hottes A K, et al. Codon usage between genomes is constrained by genome-wide mutational processes. Proc Natl Acad Sci USA, 2004, 101: 3480-3485
[31]  35 Francino M P, Ochman H. Deamination as the basis of strand-asymmetric evolution in transcribed Escherichia coli sequences. Mol Biol Evol, 2001, 18: 1147-1150
[32]  36 Lobry J R. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol, 1996, 13: 660-665
[33]  37 Duret L, Mouchiroud D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci USA, 1999, 96: 4482-4487
[34]  38 Qiu S, Bergero R, Zeng K, et al. Patterns of codon usage bias in Silene latifolia. Mol Biol Evol, 2011, 28: 771-780
[35]  39 Shah P, Gilchrist M A. Explaining complex codon usage patterns with selection for translational efficiency, mutation bias, and genetic drift. Proc Natl Acad Sci USA, 2011, 108: 10231-10236
[36]  40 Duret L. Evolution of synonymous codon usage in metazoans. Curr Opin Genet Dev, 2002, 12: 640-649
[37]  41 Plotkin J B, Robins H, Levine A J. Tissue-specific codon usage and the expression of human genes. Proc Natl Acad Sci USA, 2004, 101: 12588-12591
[38]  42 Zhang L, Li W H. Mammalian housekeeping genes evolve more slowly than tissue-specific genes. Mol Biol Evol, 2004, 21: 236-239
[39]  43 Mukhopadhyay P, Basak S, Ghosh T C. Differential selective constraints shaping codon usage pattern of housekeeping and tissue-specific homologous genes of rice and Arabidopsis. DNA Res, 2008, 15: 347-356
[40]  13 ?ársky V, Cvr?ková F, Potocky M, et al. Exocytosis and cell polarity in plants—exocyst and recycling domains. New Phytol, 2009, 183: 255-272
[41]  14 Yang K, Zhang Y, Lü J, et al. Comparison of EXO70 duplication between Arabidopsis thaliana and Oryza sativa (in Chinese). Chin Sci Bull, 2015, 60: 38-51 [杨昆, 张毅, 吕俊, 等. EXO70在拟南芥和水稻基因组中的倍增. 科学通报, 2015, 60: 38-
[42]  15 Zhang J Z. Evolution by gene duplication: An update. Trends Ecol Evol, 2003, 18: 292-298
[43]  16 Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731-2739

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133