|
科学通报 1987
可逆空间的连通支不必可逆, PP. 1844-1844 Abstract: Rajagopalan和Wilansky在文献[1]中提出了可逆拓扑空间的概念,此后一些作者也做了一系列的研究。对任意拓扑空间X,令E(X)和H(X)分别表示X到自身的连续双射(即既单又满的连续映射)和自同胚的全体。如果E(X)=H(X),则X称为可逆拓扑空间,否则称X为非可逆的。可逆空间包括了紧致Hausdorff空间以及n维(对一切正整数n)不带边流形等一大类空间。文献[1]定理6指出,若X由有限个连通支组成,则X可逆的充要条件
|