全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

聚乳酸微孔支架材料热分解动力学特性

, PP. 2850-2856

Keywords: 组织工程支架,PLA,支架材料,泡孔孔径,热重分析,分解动力学特性

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于热重测量法提出了一种对组织工程PLA微孔支架材料进行泡孔孔径相关的热分解动力学特性评价和寿命估计的新方法.实验研究中采用无溶剂CO2超临界固态发泡技术,在1~5MPa饱和压力下制备了泡孔孔径550~20μm的聚乳酸(PLA)支架材料,并进行热分解动力学研究,获得了PLA支架材料的泡孔孔径所决定的热稳定性、降解时间以及寿命的估计.实验结果证明,高饱和压力条件下制备的PLA支架材料具有小泡孔孔径和大泡孔密度;PLA原材料经过发泡后热稳定性下降,降解时间缩短;在较低温度下大泡孔孔径支架材料具有较低的活化能和较差的热稳定性,其分解时间缩短到原材料的几十分之一.研究结果可以针对组织器官对支架材料的泡孔孔径和降解时间的要求,优化固态发泡制作参数,为组织工程支架材料的精确设计及其降解特性的定量分析提供依据.

References

[1]  12 Thevenot P, Nair A, Dey J, et al. Method to analyze three-dimensional cell distribution and infiltration in degradable scaffolds. Tissue Eng,2008, 14: 1-13
[2]  14 Hsiao Y L, Maury E E, Desimone J M, et al. Dispersion polymerization of methyl methacrylate stabilized with poly(1,1-dihydroperfluorooctylacrylate) in supercritical carbon dioxide. Macromolecules, 1995, 28: 8159-8166
[3]  15 Singh L, Kumar V, Ratner B D. Generation of porous microcellular 85/15 poly(DL-lactide-co-glycolide) foams for biomedical applications.Biomaterials, 2004, 25: 2611-2617??
[4]  16 Grizzi L, Garreau H, Li S M, et al. Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence. Biomaterials, 1995,16: 305-311??
[5]  17 Zou H T, Yi C H, Wang L X, et al. Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transforminfrared spectroscopy. J Therm Anal Calorim, 2009, 97: 929-935??
[6]  18 Agrawal C M, McKinney J S, Lanctot D, et al. Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds fortissue engineering. Biomaterials, 2000, 21: 2443-2452??
[7]  24 Kissinger H E. Reaction kinetics in differential thermal analysis. Anal Chem, 1969, 41: 2060-2069??
[8]  8 Lerper H A, Mc Neill I C. Degradation studies of some polyesters and polycarbonates-2. Polylactide: Degradation under isothermal conditions,thermal degradation mechanism and photolysis of the polymer. Polym Degrad Stab, 1985, 11: 309-326??
[9]  9 Kopinke F D, Mackenzie K. Mechanism aspects of the thermal degradation of poly(lactic acid) and poly(β-hydroxybutyric acid). J AnalAppl Pyrolysis, 1997, 40-41: 43-53
[10]  10 Fan Y, Nishida H, Shirai Y, et al. Racemization on thermal degradation of poly(L-lactide) with calcium salt end structure. Polym DegradStab, 2003, 80: 503-511
[11]  11 Mikos A G, Bao Y, Cima L G, et al. Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. JBiomed Mater Res, 1993, 27: 183-189??
[12]  13 Mooney D J, Baldwin D F, Suh N P, et al. Novel approach to fabricate porous sponges of poly(DL-lactic-co-glycolic acid) without the useof organic solvents. Biomaterials, 1996, 17: 1417-1422??
[13]  19 Zhang J, Feng S Y, Ma Q Y. Kinetics of the thermal degradation and thermal stability of conductive silicone rubber filled with conductivecarbon black. J Appl Polym Sci, 2003, 89: 1548-1554??
[14]  20 Wang X, Kumar V, Li W. Low density sub-critical CO2-blown solid-state PLA foams. Cell Polym, 2007, 26: 11-35
[15]  21 Wang X, Li W, Kumar V. A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissueengineering applications. Biomaterials, 2006, 27: 1924-1929??
[16]  22 Baldwin D F, Park C B, Suh N P. A microcellular processing study of poly(ethylene terephthalate) in the amorphous and semicrystallinestates. Part I: Microcell nucleation. Polym Eng Sci, 1996, 36: 1437-1445??
[17]  23 Vilar J M G, Rubi J M. Failure of the work-Hamiltonian connection for free-energy calculations. Phys Rev Lett, 2008, 100: 020601??
[18]  25 Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn, 1965, 38: 1881-1886??
[19]  26 Doyle C D. Estimating thermal stability of experimental polymers by Empirical thermogravimetric analysis. Anal Chem, 1961, 33: 77-79??
[20]  27 Lu L, Garcia C A, Mikos A G. In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films. J Biomed Mater Res, 1999, 46: 236-244??
[21]  1 Temenoff J S, Mikos A G. Review: Tissue engineering for regeneration of articular cartilage. Biomaterials, 2000, 21: 431-440??
[22]  2 Yoon S N, Tae G P. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials,1999, 20: 1783-1790??
[23]  3 Kothapalli C R, Shaw M T, Wei M. Biodegradable HA-PLA 3-D porous scaffolds: Effect of nano-sized filler content on scaffold properties.Acta Biomater, 2005, 1: 653-662??
[24]  4 Wang Z, Zhang Z, Zhang J C, et al. Distribution of bone marrow stem cells in large porous polyester scaffolds. Chinese Sci Bull, 2009, 54:2968-2975??
[25]  5 Yang Y F, Tang G W, Zhao Y H, et al. Effect of degradation of PLGA and PLGA/β-TCP scaffolds on the growth of osteoblasts. ChineseSci Bull, 2010, 56: 982-986
[26]  6 Huang M S, Coudane J, Li S M, et al. Methylated and pegylated PLA-PCL-PLA block copolymers via the chemical modification ofdi-hydroxy PCL combined with the ring opening poly-merization of lactide. J Polym Sci Pol Chem, 2005, 43: 4196-4205??
[27]  7 Mc Neill I C, Leiper H A. Degradation stufies of some polyesters and polycarbonates-1. Polylactide: General features of the degradationunder programmed heating conditions. Polym Degrad Stab, 1985, 11: 267-285??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133