全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

土壤碳酸钙/有效磷化学计量特征对油蒿群落植物密度的影响

DOI: 10.1360/csb2012-57-1-80, PP. 80-87

Keywords: 油蒿,土壤碳酸钙,土壤有效磷,土壤碳酸钙/有效磷,化学计量特征,植物密度

Full-Text   Cite this paper   Add to My Lib

Abstract:

干旱和半干旱区土壤碳酸钙会降低土壤磷的有效性,进而影响植物生长,土壤碳酸钙/有效磷(钙磷比)化学计量特征会不会影响植物密度,这有待于研究证实.本研究对干旱和半干旱区4个油蒿(Artemisiaordosica)群落做了调查,进行了正交盆栽实验,探讨了土壤钙磷比与植物密度之间的关系.结果表明,土壤钙磷比化学计量特征对油蒿生长的影响不低于土壤碳酸钙和有效磷,土壤钙磷比对油蒿密度的影响与气候带及土壤钙磷比增加的类型和量级有关.当土壤钙磷比量级相同且小于2.5时,随土壤钙磷比的增加,半干旱区油蒿密度逐渐增大,而干旱区油蒿密度则逐渐减少.在半干旱区,当土壤钙磷比量级不变、土壤碳酸钙增幅大于有效磷增幅时,随土壤钙磷比的增加,油蒿密度也逐渐增大,土壤钙磷比与油蒿密度间关系不发生变化.在干旱区,当土壤钙磷比量级增大、土壤碳酸钙显著增加而有效磷显著减少时,随土壤钙磷比的增加,油蒿密度逐渐增大,土壤钙磷比与油蒿密度间关系发生改变.因此,干旱、半干旱区土壤钙磷比化学计量特征不同的变化类型和变化量级是影响油蒿密度的一个重要因素.

References

[1]  1 Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints in terrestrial and fresh water food webs. Nature, 2000, 408: 578-580??
[2]  2 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008, 28: 3937-3947
[3]  3 邬畏, 何兴东, 周启星. 生态系统氮磷比化学计量特征研究进展. 中国沙漠, 2010, 30: 296-302
[4]  4 Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichimetry from genes to ecosystems. Ecol Lett, 2000, 3: 540-550??
[5]  5 Koerselman W, Meuleman A F M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J Appl Ecol, 1996, 33:1441-1450??
[6]  6 Venterink H O, Wassen M J, Verkroost A W M, et al. Species richness-production patterns differ between N-, P-, and K-limited wetlands.Ecology, 2003, 84: 2191-2199??
[7]  7 Silberbush M, Waisel Y, Kafkafi U. The role of soil phosphorus in differentiation of edaphic ecotypes in Aegilops peregrine. Oecologia,1981, 49: 419-424??
[8]  8 Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil,2001, 237: 173-195??
[9]  16 赵兴梁. 沙坡头地区植物固沙问题的探讨. 见: 中国科学院兰州沙漠研究所沙坡头沙漠科学研究站, 编. 腾格里沙漠沙坡头地区流沙治理研究(二). 银川: 宁夏人民出版社, 1991. 27-57
[10]  17 王海涛, 薛苹苹, 何兴东, 等. 油蒿演替系列土壤基质的演变. 南开大学学报, 2007, 40: 87-91
[11]  20 Carreira J A, Vinegla B, Laytha K. Secondary CaCO3 and precipitation of P-Ca compounds control the retention of soil P in arid ecosystems.J Arid Environ, 2006, 64: 460-473??
[12]  21 Ma B, Zhou Z Y, Zhang C P, et al. Inorganic phosphorus fractions in the rhizosphere of xerophytic shrubs in the Alxa Desert. J Arid Environ,2009, 73: 55-61??
[13]  22 Zhao Q, Zeng D H, Lee D K, et al. Effects of Pinus sylvestris var. mongolica afforestation on soil phosphorus status of Keerqin SandyLands in China. J Arid Environ, 2007, 69: 569-582??
[14]  23 Arnesen G, Beck P S A, Engelskjon T. Soil acidity, content of carbonates and available phosphorus are the soil factors best correlatedwith alpine vegetation: Evidence from Trom, North Norway. Arc Antarc Alpine Res, 2007, 39: 189-199??
[15]  24 Larkindale J, Knight M R. Prodection against heat stress-induced oxidative damage in A rabidopsis involves calcium, abscisic acid, ethylene,and salicylic acid. Plant Physiol, 2002, 128: 682-695??
[16]  26 Peng H X, Sivasithamparam K, Turner D W. Chlamydospore germination and fusarium wilt of banana plantlets in suppressive and conductivesoils are affected by physical and chemical factors. Soil Biol Biochem, 1999, 31: 1363-1374??
[17]  27 Simon E W. The symtoms of calcium deficiency in plants. New Phytol, 1978, 80: 1-15??
[18]  28 Zhang N, He X D, Gao Y B, et al. Pedogenic carbonate and soil dehydrogenase activity in response to soil organic matter in Artemisiaordosica community. Pedosph, 2010, 20: 229-235??
[19]  30 赵文智, 程国栋. 干旱区生态水文过程若干问题评述. 科学通报, 2001, 46: 1851-1857
[20]  32 Gnanasire S. Cell membrane stability and leaf water relation as affected by phosphorus nutrition under stress in Maize. Soil Sci Plant Nutr,1990, 36: 661-666??
[21]  33 刘媖心. 我国三北地区的植物固沙. 中国沙漠, 1988, 8: 11-17
[22]  34 Zuo Y, Ren L, Zhang F, et al. Bicarbonate concentration as affected by soil water content controls iron nutrition of peanut plant in a calcareoussoils. Plant Physiol Biochem, 2007, 45: 357-364??
[23]  9 Duniway M C, Herrick J E, Monger H C. Spatial and temporal variability of plant-available water in calcium carbonate-cemented soilsand consequences for arid ecosystem resilience. Oecologia, 2010, 163: 215-226??
[24]  10 Tunesi S, Poggi V, Gessa C. Phosphate adsorption and precipitation in calcareous soils: The role of calcium ions in solution and carbonateminerals. Nutr Cycl Agroecosyst, 1999, 53: 219-227??
[25]  11 Von Wandruszka R. Phosphorus retention in calcareous soils and the effect of organic matter on its mobility. Geochem Trans, 2006, 7: 6??
[26]  12 Cross A F, Schlesinger W H. Biological and geochemical controls on phosphorus fractions in semiarid soils. Biogeochemistry, 2001, 52: 155-172??
[27]  13 Braschi I, Ciavatta C, Giovannini C, et al. Combined effects of water and organic matter on phosphorus availability in calcareous soils.Nutr Cycl Agroecosyst, 2003, 67: 67-74??
[28]  14 Tilman D. The resource-ratio hypothesis of plant succession. Am Nat, 1985, 125: 827-852??
[29]  15 朱震达. 中国沙漠概论(修订版). 北京: 科学出版社, 1980
[30]  18 鲍士旦. 土壤农化分析. 北京: 农业出版社, 2000
[31]  19 王海涛, 张银太, 何兴东, 等. 干旱区油蒿生物量凋落分解与土壤呼吸. 中国沙漠, 2007, 27: 455-459
[32]  25 Kawano T, Sahashi N, Takahashi K, et al. Salicylic acid induces extracellular superoxide generation followed by an increase in cytosoliccalcium ion in tobacco suspension culture: The earliest events in salicylic acid signal transduction. Plant Cell Physiol, 1998, 39: 721-730
[33]  29 刘志民. 科尔沁沙地植物繁殖对策. 北京: 气象出版社, 2010
[34]  31 闫金凤, 陈曦, 罗格平, 等. 干旱区绿洲地下水水位时空变异性对土地覆被变化的响应. 科学通报, 2006, 51(增刊Ⅰ): 42-48
[35]  35 Pedersen J, Fransson A M, Olsson P A. Performance of Anisantha (Bromus) tectorum and Rumex acetosella in sandy calcareous soil. Flora,2011, 206: 276-281??
[36]  36 Holford I C R. Soil phosphorus: Its measurement, and its uptake by plants. Aus J Soil Res, 1997, 35: 227-240??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133