1 Borowitzka M A. Commercial production of microalgae: Ponds, tanks, tubes and fermenters. J Biotechnol, 1999, 70: 313-321??
[2]
8 Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol, 2008, 26: 126-131??
[3]
12 Hammouda O, Gaber A, Abdelraouf N. Microalgae and wastewater treatment. Ecotoxicol Environ Safety, 1995, 31: 205-210??
[4]
14 Behrens P W, Kyle D J. Microalgae as a source of fatty acids. J Food Lipids, 1996, 3: 259-272??
[5]
15 Plaza M, Santoyo S, Jaime L, et al. Screening for bioactive compounds from algae. J Pharmaceut Biomed Anal, 2010, 51: 450-455??
[6]
16 Del Campo J, García-Gonzáez M, Guerrero M. Outdoor cultivation of microalgae for carotenoid production: Current state andperspectives. Appl Microbiol Biotechnol, 2007, 74: 1163-1174??
[7]
20 Li Y G, Xu L, Huang Y M, et al. Microalgalbiodiesel in China: Opportunities and challenges. Appl Energy, 2011, 88: 3432-3437??
[8]
21 Qiao H J, Wang G C, Zhang X J. Isolation and characterization of Chlorella sorokiniana Gxnn01 (Chlorophyta) with the properties ofheterotrophic and microaerobic growth. J Phycol, 2009, 45: 1153-1162??
[9]
22 Norton T, Melkonian M, Andersen R. Algal biodiversity. Phycologia, 1996, 35: 308-326??
[10]
23 Metting F B. Biodiversity and application of microalgae. J Indust Microbiol Biotechnol, 1996, 17: 477-489??
[11]
24 Radakovits R, Jinkerson R E, Darzins A, et al. Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell, 2010, 9:486-501??
[12]
25 Parker M S, Mock T, Armbrust E V. Genomic insights into marine microalgae. Annu Rev Genet, 2008, 42: 619-645??
[13]
26 Grossman A R. Paths toward algal genomics. Plant Physiol, 2005, 137: 410??
[14]
27 Ball S G. Eukaryotic Microalgae genomics. The essence of being a plant. Plant Physiol, 2005, 137: 397-398??
[15]
28 Pulz O. Photobioreactors: Production systems for phototrophic microorganisms. Appl Microbiol Biotechnol, 2001, 57: 287-293??
[16]
29 Eriksen N. The technology of microalgal culturing. Biotechnol Lett, 2008, 30: 1525-1536??
[17]
30 Ugwu C, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae. Bioresour Technol, 2008, 99: 4021-4028??
[18]
31 Benemann J R. Open ponds and closed photobioreactors ccomparative economics. In: 5th Annual World Congress on IndustrialBiotechnology & Bioprocessing. Chicago, 2008
[19]
34 Williams P J B, Laurens L M L. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics &economics. Energy Environ Sci, 2010, 3: 554-590??
[20]
44 Boddiger D. Boosting biofuel crops could threaten food security. Lancet, 2007, 370: 923-924??
[21]
50 Greenwell H, Laurens L, Shields R, et al. Placing microalgae on the biofuels priority list: A review of the technological challenges. JRoyal Soc Interface, 2010, 7: 703??
[22]
51 Singh J, Gu S. Commercialization potential of microalgae for biofuels production. Renew Sust Energy Rev, 2010, 14: 2596-2610??
[23]
52 Vasudevan P T, Briggs M. Biodiesel production current state of the art and challenges. J Indust Microbiol Biotechnol, 2008, 35: 421-430??
[24]
53 Pienkos P T, Darzins A. The promise and challenges of microalgal derived biofuels. Biofuels Bioprod Biorefin, 2009, 3: 431-440??
[25]
59 Lü J, Sheahan C, Fu P. Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci, 2011, 4: 2451-2466??
[26]
67 Blanco A M, Moreno J, Del Campo J A, et al. Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl MicrobiolBiotechnol, 2007, 73: 1259-1266
73 Luiten E E M, Akkerman I, Koulman A, et al. Realizing the promises of marine biotechnology. Biomol Eng, 2003, 20: 429-439??
[29]
76 Ward O P, Singh A. Omega-3/6 fatty acids: Alternative sources of production. Proc Biochem, 2005, 40: 3627-3652??
[30]
77 Munoz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Res, 2006, 40: 2799-2815??
[31]
79 Lesmana S O, Febriana N, Soetaredjo F E, et al. Studies on potential applications of biomass for the separation of heavy metals from waterand wastewater. Biochem Engin J, 2009, 44: 19-41??
[32]
80 Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol Adv, 2009, 27: 195-226??
[33]
2 Becker E W. Microalgae: Biotechnology and Microbiology. Cambridge: Cambridge Univesity Press, 1994
[34]
3 陈峰, 姜悦. 微藻生物技术. 北京: 中国轻工业出版社, 1999
[35]
4 张学成, 杨官品. 微藻基因工程及微藻产品高值化. 海洋科学, 2000, 11: 24-26
[36]
5 Richmond A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Oxford: Wiley-Blackwell, 2004
[37]
6 Haag A. Algae bloom again. Nature, 2007, 447: 520??
[38]
7 Chisti Y. Biodiesel from microalgae. Biotechnol Adv, 2007, 25: 294-306??
10 Benemann J R. CO2 mitigation with microalgae systems. Energy Convers Manag, 1997, 38: S475-S479??
[41]
11 Mallick N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review. Biometals, 2002, 15:377-390??
[42]
13 Becker E. Nutritional properties of microalgae: Potentials and constraints. In: Richmond A, ed. Handbook of Microalgal Mass Culture.Boca Paton: CRC Press, 1984. 339-408
[43]
17 Milledge J. Commercial application of microalgae other than as biofuels: A brief review. Rev Environ Sci Biotechnol, 2010, 10: 1-11
19 Huang G H, Chen F, Wei D, et al. Biodiesel production by microalgal biotechnology. Appl Energy, 2010, 87: 38-46??
[46]
32 Salim S, Bosma R, Vermu M H, et al. Harvesting of microalgae by bio-flocculation. J Appl Phycol, 2011, 23: 1-7??
[47]
33 Grima E M, Fernández F G A, Medina A R. Downstream processing of cell-mass and products. In: Richmond A, ed. Handbook ofMicroalgal Culture. Oxford: Blackwell Publishing, 2007. 215-252
[48]
35 Sheehan J, Dunahay T, Benemann J, et al. A look back at the us department of energy’s aquatic species program: Biodiesel from algae.Golden, CO: National Renewable Energy Laboratory NREL TP-580-24190, 1998
[49]
36 Edwards M. The Algal Industry Survey. Tempe: Arizona State University & Center for Management Technology, 2009
42 Solomon S. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: ClimateChange 2007: The Physical Science Basis. Cambridge: Cambridge University Press, 2007
[56]
43 Solomon S, Plattner G, Knutti R, et al. Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci USA, 2009, 106:1704-1709??
[57]
45 Williams P. Biofuel: Microalgae cut the social and ecological costs. Nature, 2007, 450: 478
47 Wijffels R, Barbosa M. An outlook on microalgal biofuels. Science, 2010, 329: 796-799??
[60]
48 Waltz E. Biotech’s green gold? Nat Biotechnol, 2009, 27: 15-18
[61]
49 Benemann J R, Weissman J C, Koopman B L, et al. Energy production by microbial photosynthesis. Nature, 1977, 268: 19-23??
[62]
54 Stephens E, Ross I, King Z, et al. An economic and technical evaluation of microalgal biofuels. Nat Biotechnol, 2010, 28: 126-128??
[63]
55 Olaizola M. Commercial development of microalgal biotechnology: From the test tube to the marketplace. Biomol Engin, 2003, 20:459-466??
[64]
56 Guerin M, Huntley M, Olaizola M. Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol, 2003, 21:210-216??
[65]
57 Li J, Zhu D, Niu J, et al. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis.Biotechnol Adv, 2011, 29: 568-574??
[66]
58 Scott S A, Davey M P, Dennis J S, et al. Biodiesel from algae: Challenges and prospects. Curr Opin Biotechnol, 2010, 21: 277-286??
61 Negoro M, Hamasaki A, Ikuta Y, et al. Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from aboiler. Appl Biochem Biotechnol, 1993, 39: 643-653??
[69]
62 Pedroni P, Davison J, Beckert H, et al. A proposal to establish an international network on biofixation of CO2 and greenhouse gasabatement with microalgae. J Energy Environ Res, 2001, 1: 136-150
[70]
63 Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea F. Astaxanthin: A review of its chemistry and applications. Crit Rev Food Sci Nutr,2006, 46: 185-196??
[71]
64 Newsome R. Food colors. Food Technol, 1986, 40: 49-56
[72]
65 Lorenz R, Cysewski G. Commercial potential for haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol, 2000,18: 160-167??
[73]
66 Fernández Sevilla J M, Acién Fernández F, Molina Grima E. Biotechnological production of lutein and its applications. Appl MicrobiolBiotechnol, 2010, 86: 27-40
[74]
68 Ceron M C, Campos I, Sa nchez J F, et al. Recovery of lutein from microalgae biomass: Development of a process for scenedesmusalmeriensis biomass. J Agric Food Chem, 2008, 56: 11761-11766??
[75]
69 Ma L, Lin X M. Effects of lutein and zeaxanthin on aspects of eye health. J Sci Food Agric, 2010, 90: 2-12??
[76]
70 Kalariya N M, Ramana K V, vanKuijk F J G M. Focus on molecules: Lutein. Exp Eye Res, 2011
[77]
71 Piccaglia R, Marotti M, Grandi S. Lutein and lutein ester content in different types of tagetes patula and T. Erecta. Indust Crops Prod,1998, 8: 45-51??
[78]
74 Molina Grima E, Belarbi E H, Acién Fernández F G, et al. Recovery of microalgal biomass and metabolites: Process options andeconomics. Biotechnol Adv, 2003, 20: 491-515??
[79]
75 Harun R, Singh M, Forde G M, et al. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust EnergyRev, 2010, 14: 1037-1047??
[80]
78 Pizarro C, Mulbry W, Blersch D, et al. An economic assessment of algal turf scrubber technology for treatment of dairy manure effluent.Ecol Engin, 2006, 26: 321-327??
[81]
81 Yan D, Lu Y, Chen Y F, et al. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-savingbiodiesel production. Bioresour Technol, 2011, 102: 6487-6493??
[82]
82 Park J B K, Craggs R J, Shilton A N. Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol, 2011, 102:35-42??
[83]
83 Oswald W J, Gotaas H B. Photosynthesis in sewage treatment. Trans Am Soc Civ Eng, 1957, 122: 73-105
[84]
84 Craggs R J, Adey W H, Jenson K R, et al. Phosphorus removal from wastewater using an algal turf scrubber. Water Sci Technol, 1996, 33:191-198