全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

地质微生物功能群:生命与环境相互作用的重要突破口

DOI: 10.1360/csb2012-57-1-3, PP. 3-22

Keywords: 地质微生物功能群,碳-硫-氮循环,铁氧化还原,光合作用,分子化石,地球生物学,地质突变期

Full-Text   Cite this paper   Add to My Lib

Abstract:

微生物类型丰富、数量巨大,是联系其他生物和环境的重要纽带.但由于在地质体中保存下来的细菌和古菌缺乏形态和结构的多样性,不能像动植物那样可以从形态上开展属种水平的研究,这个难点问题一直影响着地质微生物的研究.地质微生物功能群因在生理学、生态学和生物地球化学等方面的功能明确,并能在地质体中留下各种记录而将成为瓶颈突破的关键点,它是当前古生物学向地球生物学发展的一个重点研究内容.本文评述了与碳、硫、氮和铁等重要元素代谢和循环有关的地质微生物功能群的特点、起源及其在地质体中的识别标志,分析了这些微生物功能群在参与形成地质历史时期的异常气候、硫化海洋、低浓度硫酸盐海洋、地质营养条件以及前寒武纪条带状铁建造等方面的重要作用.

References

[1]  44 Habicht K S, Gade M, Thamdrup B, et al. Calibration of sulfate levels in the Archean ocean. Science, 2002, 298: 2372-2374??
[2]  45 Thamdrup B, Finster K, Hansen J W, et al. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron andmanganese. Appl Environ Microbiol, 1993, 59: 101-108
[3]  46 Canfield D E, Thamdrup B. The production of 34S depleted sulfide during bacterial disproportionation of elemental sulfur. Science, 1994,266: 1973-1975??
[4]  51 Wortmann U G, Bernasconi S M, Bottcher M E. Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation duringsingle-step microbial sulfate reduction. Geology, 2001, 29: 647-650??
[5]  56 Logan G A, Hinman M C, Walter M R, et al. Biogeochemistry of the 1640 Ma McArthur River (HYC) lead-zinc ore and host sediments,Northern Territory, Australia. Geochim Cosmochim Acta, 2001, 65: 2317-2336??
[6]  57 Wakeham S G, Amann R, Freeman K H, et al. Microbial ecology of the stratified water column of the Black Sea as revealed by acomprehensive biomarker study. Org Geochem, 2007, 38: 2070-2097??
[7]  58 Sorokin D Y. Diversity of halophilic sulfur-oxidizing bacteria in hypersaline habitats. In: Dahl C, Friedrich C G, eds. Microbial SulfurMetabolism. Berlin: Springer, 2008. 225-237
[8]  61 Moisander P H, Beinart R A, Hewson I, et al. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science,2010, 327: 1512-1514??
[9]  62 Zehr J P, Jenkins B D, Short S M, et al. Nitrogenase gene diversity and microbial community structure: A cross-system comparison.Environ Microbiol, 2003, 5: 539-554??
[10]  63 Barron A R, Wurzburger N, Bellenger J P, et al. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat Geosci,2009, 2: 42-45??
[11]  65 Prosser J I, Nicol G W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol,2008, 10: 2931-2941??
[12]  68 Zhang L M, Offre P R, He J Z, et al. Autotrophic ammonia oxidation by soil thaumarchaea. Proc Natl Acad Sci USA, 2010, 107:17240-17245??
[13]  70 Martens-Habbena W, Berube P M, Urakawa H, et al. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea andBacteria. Nature, 2009, 461: 976-979??
[14]  73 Codispoti L A. An oceanic fixed nitrogen sink exceeding 400 Tg Na-1 vs the concept of homeostasis in the fixed-nitrogen inventory. Biogeosciences,2007, 4: 233-253??
[15]  74 Kuypers M M M, Lavik G, Thamdrup B. Anaerobic ammonium oxidation in the marine environment. In: Neretin L, ed. Past and PresentWater Column Anoxia. Dordrecht: Springer, 2006. 311-335
[16]  75 Francis C A, Beman J M, Kuypers M M M. New processes and players in the nitrogen cycle: The microbial ecology of anaerobic and archaealammonia oxidation. ISME J, 2007, 1: 19-27??
[17]  81 Thomazo C, Ader M, Philippot P. Extreme 15N-enrichments in 2.72-Gyr-old sediments: Evidence for a turning point in the nitrogen cycle.Geobiology, 2011, 9: 107-120
[18]  82 Byrne N, Strous M, Crepeau V, et al. Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents.ISME J, 2009, 3: 117-123??
[19]  83 Zerkle A L, House C H, Cox R P, et al. Metal limitation of cyanobacterial N2 fixation and implications for the Precambrian nitrogen cycle.Geobiology, 2006, 4: 285-297??
[20]  94 Lehours A, Rabiet M, Morel-Desrosiers N, et al. Ferric iron reduction by fermentation strain BS2 isolated from an iron-rich anoxic environmental(Lake Pavin, France). Geomicrobiol J, 2010, 27: 714-722??
[21]  95 Coleman M L, Hedrick D B, Lovley D R, et al. Reduction of Fe(III) in sediments by sulfate reducing bacteria. Nature, 1993, 361: 436-438??
[22]  96 Li Y, Vali H, Sears S K, et al. Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium. Geochim CosmochimActa, 2004, 68: 3251-3260??
[23]  97 Bond D R, Lovley D R. Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. EnvironMicrobiol, 2002, 4: 115-124
[24]  98 Liu D, Dong H, Bishop M E, et al. Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri. Geochim CosmochimActa, 2011, 75: 1057-1071??
[25]  99 Vargas M, Kashefi K, Blunt-Harris E L, et al. Microbiological evidence for Fe(III) reduction on early Earth. Nature, 1998, 395: 65-67??
[26]  102 Summons R E, Jahnke L L, Hope J M, et al. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynt hesis. Nature, 1999,400: 554-557??
[27]  103 K?ster J, Volkman J K, Rullk?tter J, et al. Mono-, di- and trimethyl-branched alkanes in cultures of the filamentous cyanobacteriumCalothrix scopulorum. Org Geochem, 1999, 30: 1367-1379??
[28]  105 Summons R E, Powell T G. Chlorobiaceae in Palaeozoic sea revealed by biological markers, isotopes and geology. Nature, 1986, 319:763-765??
[29]  106 Sinninghe Damsté J S, Muyzer G, Abbas B, et al. The rise of the rhizosolenid diatoms. Science, 2004, 304: 584-588??
[30]  107 Holba A G, Tegelaar E W, Huizinga B J, et al. 24-norcholestanes as age-sensitive molecular fossils. Geology, 1998, 26: 783-786??
[31]  109 Niemann H, L?sekann T, de Beer D, et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methanesink. Nature, 2006, 443: 854-858??
[32]  110 Blumenberg M, Seifert R, Reitner J, et al. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl AcadSci USA, 2004, 101: 11111-11116??
[33]  111 Cvejic J H, Bodrossy L, Kovács K L, et al. Bacterial triterpenoids of the hopane series from the methanotrophic bacteria Methylocaldumspp: Phylogenetic implications and first evidence for an unsaturated aminobacteriohopanepolyol. FEMS Microbiol Lett, 2000, 182:361-365??
[34]  112 Whitcar M J, Faber E, Schoell M. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-isotope evidence. Geochim Cosmochim Acta, 1986, 50: 693-709??
[35]  121 Farquhar J, Johnston D T, Wing B A, et al. Multiple sulphur isotopic interpretations of biosynthetic pathways: Implications for biologicalsignatures in the sulphur isotope record. Geobiology, 2003, 1: 27-36??
[36]  123 Talbot H M, Summons R E, Jahnke L L, et al. Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmentalsettings. Org Geochem, 2008, 39: 232-263??
[37]  124 Kuypers M M M, Blokker P, Erbacher J, et al. Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event. Science,2001, 293: 92-94??
[38]  125 Sinninghe Damsté J S, Schouten S, Hopmans E C, et al. Crenarchaeol: The characteristic core glycerol dibiphytanyl glycerol tetraethermembrane lipid of cosmopolitan pelagic crenarchaeota. J Lipid Res, 2002, 43: 1641-1651??
[39]  127 Sinninghe Damsté J S, Strous M, Rijpstra W I C, et al. Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature,2002, 419: 708-712??
[40]  129 Kuypers M M M, van Breugel Y, Schouten S, et al. N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events.Geology, 2004, 32: 853-856??
[41]  130 Luo G, Wang Y, Algeo T J, et al. Enhanced nitrogen fixation in the immediate aftermath of the latest Permian marine mass extinction.Geology, 2011, 39: 647-650??
[42]  131 Xie S, Pancost R D, Yin H, et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature, 2005,434: 494-497??
[43]  132 Meyers P A, Bernasconi S M, Yum J G. 20 m.y. of nitrogen fixation during deposition of mid-Cretaceous black shales on the DemeraraRise, equatorial Atlantic Ocean. Org Geochem, 2009, 40: 158-166??
[44]  133 Zhang C L, Li Y, Ye Q, et al. Carbon isotope signatures of fatty acids in Geobacter metallireducens and Shewanella algae. Chem Geol,2003, 195: 17-28??
[45]  134 Bazylinski D A, Schübbe S. Controlled biomineralization by and applications of magnetotactic bacteria. Adv Appl Microbiol, 2007, 62:21-62??
[46]  135 Perez-Gonzalez T, Jimenez-Lopez C, Neal A L, et al. Magnetite biomineralization induced by Shewanella oneidensis. Geochim CosmochimActa, 2010, 74: 967-979??
[47]  136 Li Y, Pfiffner S M, Dyar M D, et al. Degeneration of biogenic superparamagnetic magnetite. Geobiology, 2009, 7: 25-34??
[48]  138 Carvallo C, Sainctavit P, Arrio M, et al. Biogenic vs. abiogenic magnetite nanoparticles: A XMCD study. Am Mineral, 2008, 93: 880-885??
[49]  139 Dong H, Jaisi D P, Kim J, et al. Microbe-clay mineral interactions. Am Mineral, 2009, 94: 1505-1519??
[50]  142 Croal L R, Johnson C M, Beard B L, et al. Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria. Geochim CosmochimActa, 2004, 68: 1227-1242??
[51]  143 Johnson C M, Beard B L, Klein C, et al. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. GeochimCosmochim Acta, 2008, 72: 151-169??
[52]  145 Crosby H A, Johnson C M, Roden E E, et al. Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionationduring dissimilatory iron oxide reduction. Environ Sci Technol, 2005, 39: 6698-6704??
[53]  147 Raghoebarsing A A, Smolders A J P, Schmid M C, et al. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs.Nature, 2005, 436: 1153-1156??
[54]  150 MacDonald G M, Beilman D W, Kremenetski K V, et al. Rapid early development of circumarctic peatlands and atmospheric CH4 andCO2 variations. Science, 2006, 314: 285-288??
[55]  151 Jones M C, Yu Z C. Rapid deglacial and early Holocene expansion of peatlands in Alaska. Proc Natl Acad Sci USA, 2010, 107: 7347-7352??
[56]  152 Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials.Science, 2000, 288: 128-133??
[57]  153 Hinrichs K U, Hmelo L R, Sylva S P. Molecular fossil record of elevated methane levels in Late Pleistocene coastal waters. Science,2003, 299: 1214-1217??
[58]  154 de Garidel-Thoron T, Beaufort L, Bassinot F, et al. Evidence for large methane releases to the atmosphere from deep-sea gas-hydratedissociation during the last glacial episode. Proc Natl Acad Sci USA, 2004, 101: 9187-9192??
[59]  156 van Winden J F, Kip N, Reichart G-J, et al. Lipids of symbiotic methane-oxidizing bacteria in peat moss studied using stable carbon isotopelabeling. Org Geochem, 2010, 41: 1040-1044??
[60]  163 Zeebe R E, Zachos J C, Dickens G R. Carbon dioxide foring alone insufficient to explain Palaeocene-Eocene Thermal Maximum warming.Nat Geosci, 2009, 2: 1-5
[61]  166 Wignall P B, Sun Y D, Bond D P G, et al. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China.Science, 2009, 324: 1179-1182??
[62]  167 Stanley S M. Relation of Phanerozoic stable isotope excursions to climate, bacterial metabolism, and major extinctions. Proc Natl AcadSci USA, 2010, 107: 19185-19189??
[63]  170 Poulton S W, Fralick P W, Canfield D E. The transition to a sulphidic ocean ~1.84 billion years ago. Nature, 2004, 431: 173-177
[64]  171 Gill B C, Lyons T W, Young S A, et al. Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature, 2011, 469: 80-83??
[65]  173 Marynowski L, Filipiak P. Water column euxinia and wildfire evidence during deposition of the Upper Famennian Hangenberg eventhorizon from the Holy Cross Mountains (central Poland). Geol Magaz, 2007, 144: 569-595??
[66]  175 van Bentum E C, Hetzel A, Brumsack H-J, et al. Reconstruction of water column anoxia in the equatorial Atlantic during theCenomanian-Turonian oceanic anoxic event using biomarker and trace metal proxies. Palaeogeogr Palaeoclima Palaeoecol, 2009, 280:489-498??
[67]  176 Luo G, Kump L R, Wang Y, et al. Isotopic evidence for an anomalously low oceanic sulphate concentration following end-Permian massextinction. Earth Planet Sci Lett, 2010, 300: 101-111??
[68]  177 Schulz H N, Brinkhoff T, Ferdelman T G, et al. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science, 1999,284: 493-495??
[69]  178 Kuypers M M M, Sliekers A O, Lavik G, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 2003, 422:608-611??
[70]  179 Jenkyns H C, Matthews A, Tsikos H, et al. Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during theCenomanian-Turonian oceanic anoxic event. Paleoceanography, 2007, 22: 1-17
[71]  180 Kuypers M M M, Blokker P, Erbacher J, et al. Massive expansion of marine archaea during a Mid-Cretaceous oceanic anoxic event.Science, 2001, 293: 92-94??
[72]  181 Okano K, Sawada K, Takashima R, et al. Further examples of archaeal-derived hydrocarbons in mid-Cretaceous Oceanic Anoxic Event(OAE) 1b sediments. Org Geochem, 2008, 39: 1088-1091??
[73]  190 Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran Ocean. Science, 2010, 328: 80-83??
[74]  192 Hurtgen M T, Pruss S B, Knoll A H. Evaluating the relationship between the carbon and sulfur cycles in the later Cambrian ocean: Anexample from the Port au Port Group, western Newfoundland, Canada. Earth Planet Sci Lett, 2009, 281: 288-297??
[75]  194 Castro H, Ogram A, Reddy K R. Phylogenetic characterization of methanogenic assemblages in eutrophic and oligotrophic areas of theFlorida everglades. Appl Environ Microbiol, 2004, 70: 6559-6568??
[76]  195 Zehr J P, Kudela R M. Nitrogen cycle of the open ocean: From genes to ecosystems. Annu Rev Mar Sci, 2011, 3: 197-225??
[77]  197 Moore M C, Mills M M, Achterberg E P, et al. Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. NatGeosci, 2009, 2: 867-871
[78]  200 Levitan O, Rosenberg G, Setlik I, et al. Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium.Glob Change Biol, 2007, 13: 531-538??
[79]  2 Love J E. Gaia: A New Look at Life on Earth. Oxford: Oxford University Press, 2000. 148
[80]  6 Kalyuzhnaya M G, Lapidus A, Ivanova N, et al. High-resolution metagenomics targets specific functional types in complex microbialcommunities. Nat Biotechnol, 2008, 26: 1029-1034??
[81]  9 Des Marais D J. When did photosynthesis emerge on earth? Science, 2000, 289: 1703-1705
[82]  10 Gray M W. The endosymbiont hypothesis revisited. Inter Rev Cytol, 1992, 141: 233-357??
[83]  13 Olson J M, Blankenship R. Thinking about the evolution of photosynthesis. Photosynth Res, 2004, 80: 373-386??
[84]  15 Xiong J, Fischer W M, Inoue K, et al. Molecular evidence for the early evolution of photosynthesis. Science, 2000, 289: 1724-1730??
[85]  19 Konhauser K O, Hamade T, Raiswell R, et al. Could bacteria have formed the Precambrian banded iron formations? Geology, 2002, 30:1079-1082
[86]  20 Bekker A, Holland H D, Wang P L, et al. Dating the rise of atmospheric oxygen. Nature, 2004, 427: 117-120??
[87]  21 Anbar A D, Duan Y, Lyons T W, et al. A whiff of oxygen before the Great Oxidation Event? Science, 2007, 317: 1903-1906
[88]  24 Catling D C, Claire M W. How Earth’s atmosphere evolved to an oxic state: A status report. Earth Planet Sci Lett, 2005, 237: 1-20??
[89]  29 Mittere R M. Methanogenesis and sulfate reduction in marine sediments: A new model. Earth Planet Sci Lett, 2010, 295: 358-366??
[90]  38 Ettwig K F, Butler M K, Paslier D L, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 2010, 464: 543-548??
[91]  39 Dunfield P F, Yuryev A, Senin P, et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature,2007, 450: 879-882??
[92]  40 Stetter K O. Hyperthermophilic procaryotes. FEMS Microbiol Rev, 1996, 18: 149-158??
[93]  41 Rabus A, Hansen T A, Widdel F. Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, et al,eds. The Prokaryotes. New York: Springer, 2006. 659-768
[94]  42 Shen Y A, Buick R, Canfield D E. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature, 2001, 410: 77-81??
[95]  43 Shen Y A, Farquhar J, Masterson A, et al. Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotopesystematics. Earth Planet Sci Lett, 2009, 279: 383-391??
[96]  1 Morgan J P, Reston T J, Ranero C R. Contemporaneous mass extinctions, continental flood basalts, and “impact signals”: Are mantleplume-induced lithospheric gas explosions the causal link? Earth Planet Sci Lett, 2004, 217: 263-284
[97]  3 谢树成, 龚一鸣, 童金南, 等. 从古生物学到地球生物学的跨越. 科学通报, 2006, 51: 2327-2336
[98]  4 殷鸿福, 谢树成, 童金南, 等. 谈地球生物学的重要意义. 古生物学报, 2009, 48: 293-301
[99]  5 谢树成, 殷鸿福, 史晓颖, 等. 地球生物学: 生命与地球环境的相互作用和协同演化. 北京: 科学出版社, 2011. 63
[100]  7 Strom S L. Microbial ecology of ocean biogeochemistry: A community perspective. Science, 2008, 320: 1043-1045??
[101]  8 Falkowski P G, Fenchel T, Delong E F. The microbial engines that drive Earth’s biogeochemical cycles. Science, 2008, 320: 1034-1039??
[102]  11 Buick R. The antiquity of oxygenic photosynthesis: Evidence from stromatolites in sulphate-deficient Archaean lakes. Science, 1992, 255:74-77??
[103]  12 Buick R. When did oxygenic photosynthesis evolve? Phil Trans R Soc B, 2008, 363: 2731-2734
[104]  14 Olson J M. Photosynthesis in the Archean Era. Photosynth Res, 2006, 88: 109-117??
[105]  16 Widdel F, Schnell S, Heising S, et al. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature, 1993, 362: 834-836??
[106]  17 Ehrenreich A, Widdel F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl EnvironMicrobiol, 1994, 60: 4517-4526
[107]  18 Heising S, Richter L, Ludwig W, et al. Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous ironin coculture with a “Geospirillum” sp. strain. Arch Microbiol, 1999, 172: 116-124??
[108]  22 Garvin J, Buick R, Anbar A D, et al. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science, 2009, 323: 1045-1048??
[109]  23 Kaufman A J, Johnston D T, Farquhar J, et al. Late Archean biospheric oxygenation and atmospheric evolution. Science, 2007, 317:1900-1903??
[110]  25 Kopp R E, Kirschvink J L, Hiburn I A, et al. The Paleoproterozoic snowball earth: A climate disaster triggered by the evolution ofoxygenic photosynthesis. Proc Natl Acad Sci USA, 2005, 102: 11131-11136??
[111]  26 Ohmoto H. When did the Earth’s atmosphere become oxic? Geochem News, 1997, 93: 26-27
[112]  27 Knoll A H, Summons R E, Waldbauer J R, et al. The geological succession of primary producers in the oceans. In: Falkowski P G, KnollA H, eds. Evolution of Primary Producers in the Sea. Burlington: Elsevier Academic Press, 2007. 133-163
[113]  28 Jiao N Z, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in theglobal ocean. Nat Rev Microbiol, 2010, 8: 593-599??
[114]  30 Yoshioka H, Maruyama A, Nakamura T, et al. Activities and distribution of methanogenic and methane-oxidizing microbes in marinesediments from the Cascadia Margin. Geobiology, 2010, 8: 223-233??
[115]  31 Eriksson T, ?quist M G, Nilsson M B. Production and oxidation of methane in a boreal mire after a decade of increased temperature andnitrogen and sulfur deposition. Glob Change Biol, 2010, 16: 2130-2144??
[116]  32 Shoemaker J K, Schrag D P. Subsurface characterization of methane production and oxidation from a New Hampshire wetland. Geobiology,2010, 8: 234-243??
[117]  33 Martinson G O, Werner F A, Sherber C, et al. Methane emissions from tank bromeliads in neotropical forests. Nat Geosci, 2010, 3: 1-4
[118]  34 Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature,2000, 407: 623-626??
[119]  35 Orphan V J, House C H, Hinrichs K U, et al. Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis.Science, 2001, 293: 484-487??
[120]  36 Hallam S J, Putnam N, Preston C M, et al. Reverse methanogenesis: Testing the hypothesis with environmental genomics. Science, 2004,305: 1457-1462??
[121]  37 Raghoebarsing A A, Pol A, van de Pas-Schoonen K T, et al. A microbial consortium couples anaerobic methane oxidation to denitrification.Nature, 2006, 440: 918-921??
[122]  47 Johnston D T, Wing B A, Farquhar J, et al. Active microbial sulfur disproportionation in the Mesoproterozoic. Science, 2005, 310:1477-1479??
[123]  48 Parnell J, Boyce A J, Mark D, et al. Early oxygenation of the terrestrial environment during the Mesoproterozoic. Nature, 2010, 468: 290-293??
[124]  49 Wacey D, McLoughlin N, Whitehouse M J, et al. Two coexisting sulfur metabolisms in a ca. 3400 Ma sandstone. Geology, 2010, 38:1115-1118
[125]  50 Canfield D E, Farquhar J, Zerkle A L. High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog. Geology,2010, 38: 415-418??
[126]  52 Sim M S, Bosak T, Ono S H. Large sulfur isotope fractionation does not require disproportionation. Science, 2011, 333: 74-78??
[127]  53 Canfield D E, Teske A. Late proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies.Nature, 1996, 382: 127-132??
[128]  54 Brocks J J, Love G D, Summons R E, et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea.Nature, 2005, 437: 866-870??
[129]  55 Grice K, Cao C, Love G D, et al. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 2005, 307: 706-709??
[130]  59 Wacey D, Saunders M, Brasier M D, et al. Earliest microbially mediated pyrite oxidation in ~3.4 billion-year-old sediments. Earth PlanetSci Lett, 2011, 301: 393-402
[131]  60 Gruber N, Galloway J N. An Earth-system perspective of the global nitrogen cycle. Nature, 2008, 451: 293-296??
[132]  64 Severin I, Acinas S G, Stal L J. Diversity of nitrogen-fixing bacteria in cyanobacterial mats. FEMS Microbiol Ecol, 2010, 73: 514-525
[133]  66 Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 2006, 442: 806-809??
[134]  67 Francis C A, Roberts K J, Beman J M, et al. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of theocean. Proc Natl Acad Sci USA, 2005, 102: 14683-14688??
[135]  69 Pratscher J, Dumont M G, Conrad R. Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proc NatlAcad Sci USA, 2011, 108: 4170-4175??
[136]  71 Beman J M, Chow C E, King A L, et al. Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proc NatlAcad Sci USA, 2011, 108: 208-213??
[137]  72 Risgaard-Petersen N, Langezaal A M, Ingvardsen S, et al. Evidence for complete denitrification in a benthic foraminifer. Nature, 2006,443: 93-96??
[138]  76 Li H, Chen S, Mu B Z, et al. Molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in high-temperature petroleumreservoirs. Microb Ecol, 2010, 60: 771-783??
[139]  77 Bauersachs T, Speelman E N, Hopmans E C, et al. Fossilized glycolipids reveal past oceanic N2 fixation by heterocystous cyanobacteria.Proc Natl Acad Sci USA, 2010, 107: 19190-19194??
[140]  78 Frei R, Gaucher C, Poulton S W, et al. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature,2009, 461: 250-253??
[141]  79 Blankenship R, Madigan M, Bauer C. Microbiology of nitrogen fixation by anoxygenic photosynthetic bacteria. In: Govindjee J, Amesz J,Barber R E, et al, eds. Anoxygenic Photosynthetic Bacteria, 2, Advances in Photosynthesis and Respiration. Netherlands: Springer, 2004.915-928
[142]  80 Raymond J, Siefert J L, Staples C R, et al. The natural history of nitrogen fixation. Mol Biol Evol, 2004, 21: 541-554
[143]  84 Bazylinski D A, Frankel R B. Magnetosome formation in prokaryotes. Nat Rev Microbiol, 2004, 2: 217-230??
[144]  85 潘永信, 邓成龙, 刘青松, 等. 趋磁细菌磁小体的生物矿化作用和磁学性质研究进展. 科学通报, 2004, 49: 2505-2510
[145]  86 Weber K A, Achenbach L A, Coates J D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol,2006, 4: 752-764??
[146]  87 Konhauser K O, Kappler A, Roden E E. Iron in microbial metabolisms. Elements, 2011, 7: 89-93??
[147]  88 Kappler A, Newman D K. Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria. Geochim Cosmochim Acta, 2004,68: 1217-1226??
[148]  89 Kappler A, Pasquero C, Konhauser K O, et al. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria.Geology, 2005, 33: 865-868??
[149]  90 Miot J, Benzerara K, Morin G, et al. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria. Geobiology, 2009,7: 373-384??
[150]  91 Lovley D R, Holmes D E, Neivn K P. Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol, 2004, 49: 219-286??
[151]  92 Lovley D R, Stolz J F, Nord G L, et al. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature, 1987,330: 252-254??
[152]  93 Myers C R, Nealson K H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science, 1988,240: 1319-1321??
[153]  100 Schrenk M O, Edwards K J, Goodman R M, et al. Distribution of Thiobacillus ferrooxidans and Leptospirillum ferroxidans: Implicationsfor generation of acid mine drainage. Science, 1998, 279: 1519-1522??
[154]  101 Coupland K, Johnson D B. Evidence that the potential for dissimilatory ferric reduction is widespread among acidophilic heterotrophicbacteria. FEMS Microbiol Lett, 2008, 279: 30-35??
[155]  104 Grice K, Schaeffer P, Schwark L, et al. Molecular indicators of palaeoenvironmental conditions in an immature Permian shale (Kupferschiefer,Lower Rhine Basin, N.W. Germany) from free and S-bound lipids. Org Geochem, 1996, 25: 131-147??
[156]  108 Bianchi T S, Canuel E A. Chemical Biomarkers in Aquatic Ecosystems. Princeton and Oxford: Princeton University Press, 2011
[157]  113 Conti S, Artoni A, Piola G. Seep-carbonates in a thrust-related anticline at the leading edge of an orogenic wedge: The case of the middle-late Miocene Salsomaggiore Ridge (Northern Apennines, Italy). Sediment Geol, 2007, 199: 233-251??
[158]  114 Jiang G Q, Kennedy M J, Christie-Blick N. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates.Nature, 2003, 426: 822-826??
[159]  115 Wang J S, Jiang G Q, Xiao S H, et al. Carbon isotope evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonatein south China. Geology, 2008, 36: 347-350
[160]  116 Rasmussen B. Filamentous microfossils in a 3235-million-year-old volcanogenic massive sulphide deposit. Nature, 2000, 405: 676-679??
[161]  117 Zhang C L, Li Y L, Wall J D, et al. Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in associationwith gas hydrates from the Gulf of Mexico. Geology, 2002, 30: 239-242??
[162]  118 Wilkin R T, Barnes H L. Formation processes of framboidal pyrite. Geochim Cosmochim Acta, 1997, 61: 323-339??
[163]  119 Wilkin R T, Arthur M A, Dean W E. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions.Earth Planet Sci Lett, 1997, 148: 517-525??
[164]  120 Sarkar A, Chakraborty P P, Mishra B, et al. Mesoproterozoic sulphidic ocean, delayed oxygenation and evolution of early life: Sulphurisotope clues from Indian Proterozoic basins. Geol Magaz, 2010, 147: 206-218??
[165]  122 Johnston D T, Farquhar J, Wing B A, et al. Multiple sulfur isotope fractionations in biological systems: A case study with sulfatereducers and sulfur disproportionators. Am J Sci, 2005, 305: 645-660??
[166]  126 Liu Z H, Pagani M, Zinniker D, et al. Global cooling during the Eocene-Oligocene climate transition. Science, 2009, 323: 1187-1190??
[167]  128 Jaeschke A, Ziegler M, Hopmans E C. et al, Molecular fossil evidence for anaerobic ammonium oxidation in the Arabian Sea over thelast glacial cycle. Paleoceanography, 2009, 24: PA2202
[168]  137 Kukkadapu R K, Zachara J M, Fredrickson J K, et al. Ferrous hydroxyl carbonate is a stable transformation product of biogenic magnetite.Am Mineral, 2005, 90: 510-515??
[169]  140 Vorhies J S, Gaines R R. Microbial dissolution of clay minerals as source of iron and silica in marine sediments. Nat Geosci, 2009, 2:221-225??
[170]  141 Sanz-Montero M, Rodriguez-Aranda J P, Pérez-Soba C. Microbial weathering of Fe-rich phyllosilicates and formation of pyrite in thedolomite precipitating environment of a Miocene lacustrine system. Eur J Mineral, 2009, 21: 163-175??
[171]  144 Kappler A, Johnson C M, Croby H A, et al. Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(Ⅱ)-oxidizingbacteria. Geochim Cosmochim Acta, 2010, 74: 2826-2842??
[172]  146 Grzebyk D, Schofield O, Vetriani C, et al. The Mesozoic radiation of Eukaryotic algae: The portable plastid hypothesis. J Phycol, 2003,39: 259-267??
[173]  148 Kip N, van Winden J F, Pan Y, et al. Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat Geosci,2010, 3: 617-621??
[174]  149 Rydin H, Gunnarsson U, Sundberg S. The role of Sphagnum in peatland development and persistence. In: Wieder R K, Vitt D H, eds.Boreal Peatland Ecosystems. New York: Springer, 2006. 47
[175]  155 Ruddiman W F, Guo Z T, Zhou X, et al. Early rice farming and anomalous methane trends. Quat Sci Rev, 2008, 27: 1291-1295??
[176]  157 Chen Y, Murrell J C. Geomicrobiology: Methanotrophs in moss. Nat Geosci, 2010, 3: 595-596??
[177]  158 Bristow T F, Bonifacie M, Derkowsk A, et al. A hydrothermal origin for isotopically anomalous cap dolostone cements from south China.Nature, 2011, 474: 68-71??
[178]  159 Tripati A, Elderfield H. Deep-sea temperature and circulation changes at the Paleocene-Eocene Thermal Maximum. Science, 2005, 308:1894-1898??
[179]  160 Sluijs A, Schouten S, Pagani M, et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene Thermal Maximum. Nature,2006, 441: 610-613??
[180]  161 Jenkyns H C. Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world. Phil Trans R Soc Lond A, 2003, 361:1885-1916??
[181]  162 Pagani M, Calderia K, Archer D, et al. An ancient carbon mystery. Science, 2006, 314: 1556-1557??
[182]  164 Pancost R D, Steart D S, Handley L, et al. Increased terrestrial methane cycling at the Palaeocene-Eocene thermal maximum. Nature, 2007,449: 232-235
[183]  165 Xie S, Pancost R D, Huang J, et al. Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis. Geology,2007, 35: 1083-1086??
[184]  168 Luo G, Huang J, Xie S, et al. Relationships between carbon isotope evolution and variation of microbes during the Permian-Triassictransition at Meishan Section, South China. Int J Earth Sci, 2010, 99: 775-784??
[185]  169 Canfield D E. A new model for Proterozoic ocean chemistry. Nature, 1998, 396: 450-453??
[186]  172 Armstrong H A, Abbott G D, Turner B R, et al. Black shale deposition in an Upper Ordovician-Silurian permanently stratified,peri-glacial basin, southern Jordan. Palaeogeogr Palaeoclima Palaeoecol, 2009, 273: 368-377??
[187]  174 Cao C, Love G D, Hays L E, et al. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permianmass extinction event. Earth Planet Sci Lett, 2009, 281: 188-201??
[188]  182 Kah L C, Lyons T W, Frank T D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature, 2004, 431:834-838??
[189]  183 Lowenstein T K, Hardie L A, Timofeeff M N, et al. Secular variation in seawater chemistry and the origin of calcium chloride basinalbrines. Geology, 2003, 31: 857-860??
[190]  184 Newton R J, Reeves E P, Kafousia N, et al. Low marine sulfate concentrations and the isolation of the European epicontinental sea duringthe Early Jurassic. Geology, 2011, 39: 7-10??
[191]  185 Canfield D E, Farquhar J. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc Natl Acad Sci USA, 2009,106: 8123-8127??
[192]  186 Scholten J C M, Bodegom P M, Vogelaar J, et al. Effect of sulfate and nitrate on acetate conversion by anaerobic microorganisms in afreshwater sediment. FEMS Microbiol Ecol, 2002, 42: 375-385??
[193]  187 J?rgensen B B. Mineralization of organic matter in the sea bed-the role of sulphate reduction. Nature, 1982, 296: 643-645??
[194]  188 Valentine D L. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: A review. Anton Leeuw, 2002, 81:271-282??
[195]  189 Ventura G T, Kenig F, Reddy C M, et al. Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermalbiosphere. Proc Natl Acad Sci USA, 2007, 104: 14260-14265??
[196]  191 Poulton S W, Fralick P W, Canfield D E. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat Geosci, 2010, 3: 486-490
[197]  193 Canfield D E, Glazer A N, Falkowski P G. The evolution and future of Earth nitrogen cycle. Science, 2010, 330: 192-196??
[198]  196 Mahaffey C, Michaels A F, Capone D G. The conundrum of marine N2 fixation. Am J Sci, 2005, 305: 546-595??
[199]  198 Saito M A, Bertrand E M, Dutkiewicz S, et al. Iron conservation by reduction of metalloenzyme inventories in the marine diazotrophCrocosphaera watsonii. Proc Natl Acad Sci USA, 2011, 108: 2184-2189??
[200]  199 Deutsch C, Sarmiento J L, Sigman D M, et al. Spatial coupling of nitrogen inputs and losses in the ocean. Nature, 2007, 445: 163-167??
[201]  201 Xie S, Pancost R D, Wang Y, et al. Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis. Geology, 2010,38: 447-450??
[202]  202 Shi D, Xu Y, Hopkinson B M, et al. Effect of ocean acidification on iron availability to marine phytoplankton. Science, 2010, 327: 676-679??
[203]  203 Mort H P, Adatte T, Follmi K B, et al. Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2.Geology, 2007, 35: 483-486??
[204]  204 Lehmann B, Nagler T F, Holland H D, et al. Highly metalliferous carbonaceous shale and Early Cambrian seawater. Geology, 2007, 35:403-406??
[205]  205 Klein C. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geological setting, mineralogy, metamorphism,geochemistry, and origin. Am Mineral, 2005, 90: 1473-1499??
[206]  206 Canfield D E, Habicht K S, Thamdrup B. The Archean sulfur cycle and the early history of atmospheric oxygen. Nature, 2000, 288: 658-661
[207]  207 Holland H. The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B, 2006, 361: 903-915??
[208]  208 Posth N R, Hegler F, Konhauser K O, et al. Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans.Nat Geosci, 2008, 1: 703-708??
[209]  209 Konhauser K O, Amskold L, Lalonde S V, et al. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. EarthPlanet Sci Lett, 2007, 258: 87-100??
[210]  210 Planavsky N, Rouxel O, Bekker A, et al. Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans.Earth Planet Sci Lett, 2009, 286: 230-242??
[211]  211 Li Y, Konhauser K O, Cole D R, et al. Mineral ecophysiological data provide growing evidence for microbial activity in banded-ironformations. Geology, 2011, 29: 707-710

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133