全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

盐胁迫条件下骆驼刺与绿豆光合日变化特征及午休现象的成因

, PP. 1039-1045

Keywords: 骆驼刺[(Alhagi,pseudoalhagi),绿豆(Vigna,radiata),盐胁迫,光合日变化,光合“午休”,叶绿素

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究盐生豆科植物骆驼刺与盐敏感植物绿豆在盐胁迫下光合日变化与光合“午休”现象的成因,在网室培养,并用0mmol?L-1(对照)、50mmol?L-1、100mmol?L-1、200mmol?L-1NaCl处理2周,测定光合作用日变化、叶绿素含量和Rubisco大亚基基因的表达等参数。结果表明未经盐处理时,骆驼刺和绿豆光合日变化均呈单峰型;经盐处理后,两者光合日变化响应有明显差异。骆驼刺50~200mmol?L-1NaCl处理后,其净光合速率(Pn)均比未处理(对照)上升速率快,而其他处理峰值与对照之间没有显著差异;绿豆对照光合速率的上升则比盐处理的快,盐处理光合速率峰值低于对照。骆驼刺50mmol?L-1、100mmol?L-1和绿豆50mmol?L-1处理Pn没有出现“午休”现象,而骆驼刺200mmol?L-1处理与绿豆100mmol?L-1处理出现“午休”现象。骆驼刺在重度盐胁迫下,由于气孔导度(Gs)下降而引起轻微的“午休”现象,而盐处理绿豆中Rubisco被抑制,对Pn午休的贡献比其Gs的贡献更为显著。在绿豆中大亚基基因(rbcL)的表达量随着盐胁迫的提高而下降。骆驼刺中rbcL的表达在50mmol?L-1和100mmol?L-1处理下有所增加,而在200mmol?L-1处理显著降低。绿豆和骆驼刺的总叶绿素含量及其Chla/b比值的动态变化表明,绿豆PSI复合体下降速率较PSII快;与此相反,骆驼刺盐处理后PSI复合体浓度的增加却比PSII复合体快。

References

[1]  Zhu J K.Plant salt tolerance〔J〕.Trends Plant Science,2001,6:66-72.
[2]  王国清,姜德华.绿洲土地利用中沙漠化和盐渍化的问题与对策:以新疆为例〔J〕.中国土地科学,1991,5(4):24-28.
[3]  塔西甫拉提·特依拜,张飞,赵睿,等.新疆干旱区土地盐渍化信息提取及实证分析〔J〕.土壤通报,2007,38(4):625-630.
[4]  Munns R.Comparative physiology of salt and water stress〔J〕.Plant Cell and Environment,2002,25:239-250.
[5]  Munns R,Tester M.Mechanisms of salinity tolerance〔J〕.The Annual Review of Plant Biology,2008,59:651-81.
[6]  Mansonr M M F,Salama K H A.Cellular basis of salinity tolerance in plants〔J〕.Environmental and Experimental Botany,2004,52:113-122.
[7]  Gupta N K,Meena S K,Gupta S,et al.Gas exchange,membrane permeability,and ion uptake in two species of Indian jujube differing in salt tolerance〔J〕.Photosynthetica,2002,40(4):535-539.
[8]  Asada K.The waterwater cycle in Chloroplasts:Scavenging of active oxygens and dissipation of excess photons〔J〕.Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:601-639.
[9]  Kurban H.Ecophysiological Study on Leguminous Plant Alhagi pseudoalhagi〔D〕.Japan:Hiroshima University,2000.
[10]  Koyro H W.Effect of salinity on growth,photosynthesis,water relations and solute composition of the potential cash crop halophyte Plantagu coronopus〔J〕.Environmental and Experimental Botany,2006,56:136-146.
[11]  Munns R.Physiological processes limiting plant growth in saline soil:Some dogmas and hypotheses〔J〕.Plant Cell and Environment,1993,16:15-24.
[12]  Chaves M M,Flexas J,Pinheiro C.Photosynthesis under drought and salt stress:Regulation mechanisms from whole plant to cell〔J〕.Annals of Botany,2009,103:551-560.
[13]  Stepien P,Johnson G N.Contrasting responses of photosynthesis to salt stress in the glycophyte arabidopsis and the halophyte thellungiella:Role of the plastid terminal oxidase as an alternative electron sink〔J〕.Plant Physiol,2009,149:1 154-1 165.
[14]  Von Caemmerer S,Farquhar G D.Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves〔J〕.Planta,1981,153:376-387.
[15]  Misra A N,Sahu S M,Misra M,et al.Sodium chloride induced changes in leaf growth,and pigment and protein contents in two rice cultivars〔J〕.Biologia Plantarum,1997,39(2):257-262.
[16]  Santos C V.Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves〔J〕.Scientia Horticulturae,2004,103:93-99.
[17]  Soussi M,Linch C,Ocana A.Effects of salt stress on growth,photosynthesis and nitrogen fixation in chickpea[WTBX](Cicer arietinum[WTBZ] L.)〔J〕.Journal of Experimental Botany,1998,49:1 329-1 337.
[18]  RomeroAranda R,Soria T,Cuartero J.Tomato plantwater uptake and plantwater relationships under saline growth conditions〔J〕.Plant Science,2001,160:265-272. Kao W Y,Tsai H C,Tsai T T.Effect of Na and nitrogen availability on growth and photosynthesis of seedlings of a mangrove species,[WTBX]Kandelia candel[WTBZ](L.) Druce〔J〕.Journal of Plant Physiology,2001,158(7):841-846.
[19]  海利力·库尔班,王蕾,阿卜杜许库尔·牙合甫,等.持续干旱下天山野生杏幼苗渗透调节物质的累积特性〔J〕.干旱区研究,2011,28(1):126-132. 浏览
[20]  Kurban H,Saneoka H,Nehira K,et al.Effect of salinity on growth,photosynthesis and mineral composition in Leguminous plant [WTBX]Alhagi pseudoalhagi[WTBZ](Bieb.)〔J〕.Soil Science and Plant Nutrition,1999,45(4):851-862.
[21]  Hasegawa P M,Bressan R A,Zhu J,et al.Plant cellular and molecular responses to high salinity〔J〕.Annual Review of Plant Physiology and Plant Molecular Biology,2000,51:463-499.
[22]  Ishida A,Toma T,Marjenah.Limitation of leaf carbon gain by stomatal and photochemical processes in the top canopy of [WTBX]Macaranga conifera,[WTBZ]a tropical pioneer tree〔J〕.Tree Physiology,1999,19:467-473.
[23]  Schulze E D,Lange O L,Evenari M,et al.The role of air humidity and leaf temperature in controlling stomatal resistance of [WTBX]Prunus armeniaca[WTBZ] L.under desert conditions I.Asimulation of daily course of stomatal resistance〔J〕.Oecologia,1974,17(2):159-170.
[24]  Raschke K,Resemann A.The midday depression of CO2 assimilation in leaves of [WTBX]Arbutus unedo[WTBZ] L.:Diurnal changes in photosynthetic capacity related to changes in temperature and humidity〔J〕.Planta,1986,168:546-558.
[25]  Tenhunen J D,Lange O L,Gebel J,et al.Changes in photosynthetic capacity,carboxylation efficiency,and CO2 compensation point associated with midday stomatal closure and midday depression of net CO2 exchange of leaves of [WTBX]Quercus suber[WTBZ]〔J〕.Planta,1984,162:193-203.
[26]  Küppers M,Wheeler A M,Küppers B I L,et al.Carbon fixation in eucalypts in the field:Analysis of diurnal variations in photosynthetic capacity〔J〕.Oecologia,1986,70:273-282.
[27]  Porra R J,Thompson W A,Kriedemann P E.Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents:Verification of the concentration of chlorophyll II standards by atomic absorption spectroscopy〔J〕.Biochim Biophys Acta,1989,975:384-394.
[28]  Burnette W N.‘Western blotting’:Electrophoretic transfer of proteins from sodium dodecyl sulfatepolyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein〔J〕.Analytical Biochemistry,1981,112(2):195-203.
[29]  Ball M C,Farquhar G D.Photosynthetic and stomatal responses of the grey mangrove,[WTBX]Avicennia marina,[WTBZ]to transient salinity conditions〔J〕.Plant Physiology,1984,74:7-11.
[30]  Heuer B,Plaut Z.Photosynthesis and osmotic adjustment of two sugarbeet cultivars grown under saline conditions〔J〕.Journal of Experimental Botany,1989,40:437-440.
[31]  Pons T L,Welschen R A M.Midday depression of net photosynthesis in the tropical rainforest tree Eperua grandiflora:Contributions of stomatal and internal conductances,respiration and Rubisco functioning〔J〕.Tree Physiology,2003,23(4):937-947.
[32]  Parry M A J,Keys A J,Madgwick P J,et al.Rubisco regulation:A role for inhibitors〔J〕.Journal of Experimental Botany,2008,59(7):1 569-1 580.
[33]  Kane H J,Wilkin J M,Portis A R,et al.Potent inhibition of ribulosebisphosphate carboxylase by an oxidized impurity in Ribulose-1,5-bisphosphate〔J〕.Plant Physiology,1998,117:1 059-1 069.
[34]  Kim K M,Portis A R.Oxygendependent H2O2 production by Rubisco〔J〕.FEBS Letters,2004,571:124-128.
[35]  Zhu G H,Bohnert H J,Jensen R G,et al.Formation of the tightbinding inhibitor,3ketoarabinitol-1,5-bisphosphate carboxylase/oxygenase is O2-dependent〔J〕.Photosynthesis Research,1998,55:67-74.
[36]  Anderson J M.Photoregulation of the composition,function,and structure of thylakoid membranes〔J〕.Annual Review of Plant Physiology,1986,37:93-136.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133