Peng X, Yan J, Zhou Y, et al. Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air [J]. Acta Mater., 2005, 53 (19): 5079
[3]
Wang F, Geng S. High temperature oxidation and corrosion resistant nanocrystalline coatings [J]. Surf. Eng., 2003, 19 (1): 32
[4]
周瑞发, 韩雅芳, 陈祥宝. 纳米材料技术[M]. 北京: 国防工业出版社, 2003
[5]
Suryanarayana C, Froes F H. Nanostructured titanium aluminides [J]. Mater. Sci. Eng., 1994, A179-180 (1): 108
[6]
Hono K, Zhang Y, Sakurai T, et al. Microstructure of a rapidly solidified Al-4V-2Fe ultrahigh strength aluminum alloy [J]. Mater. Sci. Eng., 1998, A250 (1): 152
[7]
Pon-On W, Winotai P. Nanocrystallization in Fe81B13.5Si3.5C2 amorphous magnetic ribbons [J]. J. Magn. Magn. Mater., 2008, 320 (3-4): 81
[8]
Jurczyk M, Okonska I, Iwasieczko W, et al. Thermodynamic and electrochemical properties of nanocrystalline Mg2Cu-type hydrogen storage materials [J]. J. Alloys Compd., 2007, 429 (1-2): 316
[9]
Barbucci A, Farne G, Matteazzi P, et al. Corrosion behavior of nanocrystalline Cu90Ni10 alloy in neutral solution containing chlorides [J]. Corros. Sci., 1998, 41 (3): 463
[10]
Gao Y, Zheng Z J, Zhu M, et al. Corrosion resistance of electrolessly deposited Ni-P and Ni -W-P alloys with various structures [J]. Mater. Sci. Eng., 2004, A381 (1/2): 98
[11]
Oguzie E E, Li Y, Wang F H. Effect of surface nanocrystallization on corrosion and corrosion inhibition of low carbon steel: Synergistic effect of methionine and iodide ion [J]. Electrochim. Acta, 2007, 52 (24): 6988
[12]
Kamachi M U, Scudino S, Kühn U, et al. Polarisation behaviour of the Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5 alloy in different microstructural states in acid solutions [J]. Scr. Mater., 2004, 50 (11): 1379
[13]
Aledresse A, Alfantazi A. A study on the corrosion behavior of nanostructured electrodeposited cobalt [J]. J. Mater. Sci., 2004, 39 (4): 1523
[14]
López-Hirata Víctor M, Arce-Estrada Elsa M. Characterization of Co-Cu mechanical alloys by linear sweep voltammetry [J]. Electrochim. Acta, 1997, 42 (1), 61
[15]
Kim S H, Aust K T, Erb U, et al. A comparison of the corrosion behaviour of polycrystalline and nanocrystalline cobalt [J]. Scr. Mater., 2003, 48 (9): 1379
[16]
Yu B, Woo P, Erb U. Corrosion behaviour of nanocrystalline copper foil in sodium hydroxide solution [J]. Scr. Mater., 2007, 56 (5): 353
[17]
Jung H, Alfantazi A. An electrochemical impedance spectroscopy and polarization study of nanocrystalline Co and Co-P alloy in 0.1M H2SO4 solution [J]. Electrochim. Acta, 2006, 51 (8-9): 1806
[18]
Alves H, Ferreira M G S, K?ster U. Corrosion behavior of Nanocrystalline (Ni70Mo30)90B10 alloys in 0.8 M KOH Solutions [J]. Corros. Sci., 2003, 45 (8): 1833
[19]
Yu J K, Han E H, Lu L, et al. Corrosion behaviors of nanocrystalline and conventional polycrystalline copper [J]. J. Mater. Sci., 2005, 40 (4): 1019
[20]
Lu H B, Li Y, Wang F H. Enhancement of the electrochemical behavior for Cu-70Zr alloy by grain refinement [J]. Surf. Coat. Technol., 2006, 201 (6): 3393
[21]
Lu H B, Li Y, Wang F H. Improved corrosion behavior of nanocrystalline Cu-20Zr films in HCl solution [J]. Thin Solid Films, 2006, 510 (1-2): 197
[22]
Yang X, Peng X, Wang F. Hot corrosion of a novel electrodeposited Ni-6Cr-7Al nanocomposite under molten (0.9Na, 0.1K)2SO4 at 900 [J]. Scr. Mater., 2007, 56 (10): 891
[23]
Wang L P, Zhang J Y, Gao Y, et al. Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution [J]. Scr. Mater., 2006, 55 (7): 657
[24]
Luo W, Qian C, Wu X J, et al. Electrochemical corrosion behavior of nanocrystalline copper bulk [J]. Mater. Sci. Eng., 2007, A452-453 (15): 524
[25]
Mishra R, Balasubramaniam R. Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel [J]. Corros. Sci., 2004, 46 (12): 3019
[26]
Chassaing E, Portail N, Levy A F, et al. Characterisation of electrodeposited nanocrystalline Ni-Mo alloys [J]. J. Appl. Electrochem., 2004, 34 (11): 1085
[27]
Rada M, Lyubina J, Gebert A, et al. Corrosion behavior of Nd-Fe-B/α-Fe nanocomposite magnets [J]. J. Magn. Magn. Mater., 2005, 290-291 (2): 1251
[28]
Albitera A, Espinosa-Medina M A, Gonzalez-Rodriguez J G, et al. Effect of Mo, Ga and Fe on the corrosion resistance of nanocrystalline NiAl alloy in acidic media [J]. Int. J. Hydrogen Energy, 2005, 30 (12): 1311.
[29]
Costa B F O, Le Ca?r G, Begin-Colin S, et al. Characterization of mechanically alloyed Fe ± Cr ± Sn alloys [J]. J. Mater. Process. Technol., 1999, 92-93 (30): 395
[30]
Wei K, Wu X F, Fu Y, et al. Corrosion resistance and microstructure of stainless steel modified by pulsed high energy density plasma [J]. J. Mater. Sci., 1999, 34 (19): 4633
[31]
Wu X, Tao N R, Hong Y, et al. Lu. Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP [J]. Acta Mater., 2002, 50 (8): 2075
[32]
El-Aziz A M, Kirchner A, Gutfleisch O, et al. Investigations of the corrosion behavior of nanocrystalline Nd-Fe-B hot pressed magnets [J]. J. Alloys Compd., 2000, 311 (2): 299
[33]
De La Torre S D. Metastable Alloy Phase Formation in Immiscible Metallic Systems Produced by Mechanical Alloying [D]. Japan: Kyoto University, 1995
[34]
Ye W, Li Y, Wang F H. Effects of nanocrystallization on the corrosion behavior of 309 stainless steel [J]. Electrochim. Acta, 2006, 51 (21): 4426