Grimes R W, Nuttall W J. Generating the option of a two-stage nuclear renaissance[J]. Science, 2010, 329 (3): 799
[2]
Krisztian R. Progress in Corrosion Research[M]. NewYork: Nova Science Publishers, Inc., 2007
[3]
Varga K, Németh Z, Somlai J, et al. Hydrodynamics of the effectiveness of the AP-CITROX Decontamination technology [J]. Radioanal. Nucl. Chem., 2002, 254 (3): 589
[4]
Venkateswaran G. Dilute chemical decontamination of clean-up system of unit-2, TAPS: chemistry aspects and salient features [J]. BARC Newsletter, 2001, 210: 1
[5]
Morris R. Recent chemical decontamination experience[J]. Water Chem. Nucl. Reactor Systems, 2001, 2(8): 451
[6]
Wood C J. A review of the application of chemical decontamination technology in the United States[J]. Prog. Nucl. Energy, 1990, 23 (1): 35
[7]
Miller D G. Controlling Radiation Fields in CANDU Reactors Using Chemical Decontamination Technologies[M]. Canada: Atomic Energy of Limited, 1997
[8]
Wood C J, Bradbury D, Elder G. The EPRI D&DX chemical decontamination process[A]. Spectrum 2002: Exploring Science-Based Solutions and Technologies, Biennial International Conference on Nuclear and Hazardous Waste Management, 9th, Reno, NV, United States[C]. USA, 2002
[9]
Anderson R M. Technology Reference Guide for Radiologically Contaminated Surfaces[M]. US: EPA, 2006
[10]
Linden U. The Loviisa 2 experience[J]. Nucl. Eng. Intern., 1995, 40: 41
[11]
Wille H, Sato Y. Field experience of chemical decontamination and waste reduction with the CORD process[J]. Chem. React. Eau Actes Conf. Int, 1994, 1: 179
[12]
Jansen R, Bruijne D. Dose reduction by chemical decontamination[J]. ATW Int. Z. Kernenerg, 1998, 43 (10): 610
[13]
Morita S, Masakatsu A, Shinji O. Application of a new Japanese chemical decontamination method to system decontamination of reactor cooling system in the FUGEN nuclear power station[J]. Water Chem. Nucl. Reactor Systems, 2000, 1(8): 185
[14]
Szabo A, Varga K, Nemeth Z, et al. Effect of a chemical decontamination procedure on the corrosion state of the heat exchanger tubes of steam generators[J]. Corros. Sci., 2006, 48(9): 2727
[15]
Rufus A L, Velmurugan S, Sasikumar P, et al. Ion-exchange considerations in dilute chemical decontamination processes operated in theregenerative mode[J]. Nucl. Technol., 1998, 122(2): 228
[16]
Venkateswaran G. Chemical decontamination of BWR nuclear systems[J]. BARC Newsletter, 2003, 237: 24
[17]
Priya A R S, Muralidharan S, Velmurugan S, et al. Corrosion inhibitor for the chemical decontamination of primary coolant systems of nuclear power plants[J]. Mater. Chem. Phys., 2008, 110(2-3): 269
[18]
Balaji V, Tripathi V S, Keny S J, et al. Studies on the process development for the chemical decontamination of stainless-steel systems: novel observations[J]. Ind. Eng. Chem. Res., 2006, 45(13): 4461
[19]
Ishida K, Nagase M, Uetake N. Low corrosive chemical decontamination method using pH control, (II) decomposition of reducing agent by using catalyst with hydrogen peroxide[J]. J. Nucl. Sci. Technol., 2002, 39(9): 941
[20]
Rado K, Nemeth Z, Schunk J. An overview on the corrosion effects of chemical decontamination technologies [M]. NewYork: Nova Science Publishers, 2007
[21]
Balaji V, Tripathi V S, Keny S J, et al. Studies on the process development for the chemical decontamination of stainless-steel systems: novel observations[J]. Ind. Eng. Chem. Res., 2006, 45 (13): 4461
[22]
Kumar P S, Rajesh P, Suresh S. Studies on the process aspects related to chemical decontamination of chromium-containing alloys with redox processes[J]. PowerPlant Chem., 2004, 6(8): 497
[23]
Ranganathan S, Madapuzi P S, Sevilmedu V N, et al. Kinetics of dissolution of α-Fe2O3 and γ-Fe2O3 in EDTA and NTA-based formulations[J]. PowerPlant Chem., 2004, 6(9): 562
[24]
Keny S J, Kumbhar A G, Venkateswaran G, et al. Radiation effects on the dissolution kinetics of magnetite and hematite in EDTA- and NTA-based dilute chemical decontamination formulations[J]. Radiat. Phys. Chem., 2005, 72(4): 475
[25]
Kamal K, Puspalata R, Ghasi R D, et al. A dilute chemical decontaminant formulation containing gallic acid as a reductant[J]. PowerPlant Chem., 2001, 3: 18
[26]
Nagase M, Ishida K. Low corrosive chemical decontamination method using pH control, (I) basic system[J]. J. Nucl. Sci. Technol., 2001, 38(12): 1090
[27]
Dwibedy P, Dey G, Naik G P, et al. Rate constants for the reaction of OH radicals with some amino polycarboxylic acids[J]. Intern. J. Chem. Kinetics, 2000, 32(2): 99 3.0.CO;2-# target="_blank">
[28]
Tripathi V S, Manjanna J, Venkateswaran G, et al. Electrolytic preparation of V (II) formate in pilot plant scale using stainless steel mesh electrodes: dissolution of R-Fe2O3/Fe1.6Cr0.4O3 in aqueous V (II)-NTA complex[J]. Ind. Eng. Chem. Res., 2004, 43: 5989
[29]
Rufus A L, Velmurugan S, Sathyaseelan V S, et al. Comparative study of nitrilo triacetic acid (NTA) and EDTA as formulation constituents for the chemical decontamination of primary coolant systems of nuclear power plants[J]. Prog. Nucl. Energy, 2004, 44(1): 13
[30]
Rufus A L, Sathyaseelan V S, Velmurugan S, et al. NTA-based formulation for the chemical decontamination of nuclear power plants[J]. Nucl. Energy, 2004, 43(1): 47
[31]
Ishida K, Nagase M, Uetake N. Low corrosive chemical decontamination method using pH control, (II) decomposition of reducing agent by using catalyst with hydrogen peroxide[J]. J. Nucl. Sci. Technol., 2002, 39(9): 941
[32]
Latha G, Rangarajan S, Narasimhan S V. Electrochemical investigation of carbon steel corrosion and its inhibition in a dilute decontamination chemical[J]. Corros. Prev. Contr., 2003, 50(1): 35
[33]
Das C M. Evaluation of acridine, p-amino benzaldehyde and diethanol amine as corrosion inhibitors for carbon steel in citric acid[J]. Chem. Technol., 1996, 3(5): 259
[34]
Das C M, Sudersanan M. Development of Expert System for Corrosion Problems[A]. Proc. Eleventh National Congress on corrosion control[C]. India, 2003
[35]
Priya A R S, Muralidharan S, Velmurugan S, et al. Corrosion Inhibitor for the Chemical Decontamination of Primary Coolant Systems of Nuclear Power Plants[A]. Proc. Thirteenth National Congress on Corrosion Control[C]. India, 2006
[36]
Varga K, Nemeth Z, Szabo A, et al. Comprehensive investigation of the corrosion state of the heat exchanger tubes of steam generators. Part I. General corrosion state and morphology[J]. J. Nucl. Mater., 2006, 348: 181
[37]
Homonnay Z, Kuzmann E, Varga K, et al. Comprehensive investigation of the corrosion state of the heat exchanger tubes of steam generators. Part II. Chemical composition and structure of tube surfaces [J]. J. Nucl. Mater., 2006, 348: 191
Szabo A, Varga K, Nemeth Z, et al. Effect of a chemical decontamination procedure on the corrosion state of the heat exchanger tubes of steam generators[J]. Corros. Sci., 2006, 48(9): 2727
[40]
Takayama S, Hirabayashi H, Yajima M, et al. The effect of residual chemical decontamination reagent on SCC susceptibility of type 304SS[J]. Water Chem. Nucl. Reactor Systems, 1996, (7): 263