Carneiro R A, Ratnapuli R C, Vanessa F C. The influence of chemical composition and microstructure of API pipeline steels on hydrogen induced cracking and sulfide stress corrosion cracking [J]. Mater. Sci. Eng., 2003, A357(1): 104
[5]
Farzad M, Faysal F E, Akram A. Corrosion of simulated weld HAZ of APIX-80 pipeline steel [J]. Corros. Sci., 2012, 63: 323
Jin T Y, Liu Z Y, Cheng Y F. Effect of non-metallic inclusions on hydrogen-induced cracking of API5L X100 steel [J]. Int. J. Hydrogen Energy, 2010, 35(15): 8014
[8]
Mohtadi-Bonab M A, Szpunar J A, Razavi-Tousi S S. A comparative study of hydrogen induced cracking behavior in API 5L X60 and X70 pipeline steels [J]. Eng. Failure Anal., 2013, 33: 163
Chen Y Y, Liou Y M, Shih H C. Stress corrosion cracking of type 321 stainless steels in simulated petrochemical process environments containing hydrogen sulfide and chloride [J]. Mater. Sci. Eng.,2005, A407(2): 114
[20]
Hinds G, Wickstrom L, Mingord K, et al. Impact of surface condition on sulphide stress corrosion cracking of 316L stainless steel [J]. Corros. Sci., 2013, 71: 43
Tavares S M, Silva V G, Pardal J M, et al. Investigation of stress corrosion cracks in a UNSS32750 super duplex stainless steel [J]. Eng. Failure Anal., 2013, 35: 88
Blatt W, Kohley T, Lotz U, et al. The influence of hydro dynamics on erosion corrosion in two-phase liquid-particle flow [J]. Corrosion, 1989, 45(10): 793
[38]
刘惟. 四川气田输气干线内腐蚀及其控制 [J]. 油气储运, 1992, 11(6): 40
[39]
Heitz E. Chmechanical effects of flow on corrosion [J]. Corrosion, 1991, 47(2): 135