T. Misawa, K. Asami, K. Hashimoto, S. Shimodaira, The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel, Corrosion Science, 1974,14: 279.
[3]
Y.Y. Chen, H.J. Tzeng, L.I. Wei, H.C. Shih, Mechanical properties and corrosion resistance of low-alloy steels in atmospheric conditions containing chloride, Mater. Sci & Egn A, 2005,398: 47.
[4]
B. Rosales, R. Vera, G. Moriena, Evaluation of the protective properties of natural and artificial patinas on copper. Part I. Patinas formed by immersion. Corrosion Science., 1999,41:625.
[5]
T. Nishimura, H. Katayama, K. Noda, T. Kodama, Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions, Corrosion, 2000,56:935.
[6]
R. Vera, B.M. Rosales, C. Tapia, Effect of the exposure angle in the corrosion rate of plain carbon steel in a marine atmosphere, Corrosion Science., 2003,45:321.
[7]
I. Suzuki, Y. Hisamatsu, Nature of atmospheric rust on iron, J. Electrochem. Soc: solid-state sci. tech. 1980,127:2210.
[8]
I. Matsushima, T. Ueno, On the protective nature of atmosphere rust on low-alloy steel, Corrosion Science., 1971,11:129.
[9]
M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, T. Misawa, The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century, Corrosion Science., 1994,36:283.
[10]
M. Pourbaix, Rapports Techniques CEBELCOR, 109, RT 160, 1969, pp. 1-14.
[11]
H. Antony, S. Perrin, P. Dillman, L. Legrand, A. Chausse, Electrochemical study of indoor atmospheric corrosion layers formed on ancient iron artifacts, Electrochim. Acta, 2007,52:7754.
[12]
T. Kamimura, S. Nasu, T. Segi, T. Tazaki, S. Morimoto, H. Miyuki, Corrosion behavior of steel under wet and dry cycles containing Cr3+ ion. Corrosion Science., 2003),45:1863.
[13]
K. Asami, M. Kikuchi, In-depth distribution of rusts on plain carbon steel and weathering steels exposed to coastal–industrial atmosphere for 17 years, Corrosion Science., 2003,45:2671.