全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

合金元素对新型Co-Al-W合金电化学腐蚀行为的影响

, PP. 371-376

Keywords: Co-Al-W合金,点蚀,电化学方法,腐蚀行为

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了Mo、Nb、Ta、Ti合金元素对新型Co-Al-W合金耐腐蚀性能的影响.结果表明,Mo、Nb、Ta、Ti的加入可以提高合金在NaCl溶液中的耐腐蚀性能.相对于9.8W合金,2Mo合金的耐腐蚀性能最好,2Nb和2Ta居中,2Ti合金较差.在不同pHNaCl溶液中,各种合金均会遭受到严重的腐蚀,蚀坑多发生在晶界处.点蚀发生是由于Cl-从溶液中迁移至蚀孔所致.

References

[1]  Suzuki A, Pollock T M. High-temperature strength and deformation ofγ/γ' two-phase Co-Al-W-base alloys[J]. Acta Mater., 2008, 56(6): 1288.
[2]  Sato J, Omori T, Oikawa K, et al. Cobalt-base high-temperature alloys[J]. Science, 2006, 312: 90.
[3]  Suzuki A, DeNolf G C, Pollock T M. Flow stress anomalies in γ/γ' two phase Co-Al-W-base alloys[J]. Scr. Mater. 2007, 56: 385.
[4]  Beltran A M. In: Superalloys II[C]. New York : Wiley, 1987: 135.
[5]  马敬翙, 刘光明, 曾潮流等. 镍基高温合金M17和M38G的电化学腐蚀行为研究[J]. 表面技术, 2006, 35(4): 15.
[6]  李谋成, 曾潮流, 林海潮等. 不锈钢在含SO42-稀HCl中的电化学腐蚀行为[J]. 腐蚀科学与防护技术, 2002, 14(3): 5.
[7]  Hodgsona A W E, Kurz S, Virtanen S, et al. Passive and transpassive behavior of CoCrMo in simulated biological solution [J]. Electrochem. Acta, 2004, 49: 2167.
[8]  Hiromoto S, Onodera E, Chiba A, et al. Microstructure and corrosion behavior in biological environments of the new fogged low-Ni Co-Cr-Mo alloys[J]. Biomaterials, 2005, 26: 4912.
[9]  Guo W Y, Sun J, Wu J S. Effect of deformation on corrosion behavior of Ti-23Nb-0.7Ta-2Zr-O alloy[J]. Mater. Charact., 2009, 60(3): 173.
[10]  Scully J C. The Fundamentals of Corrosion. 3rd edition[M]. New York: Pergamon Pr, 1990.
[11]  Bockris J, Khan S. Surface electrochemistry: A molecular level approach[M]. New York: Plenum Press, 1993.
[12]  Reclaru L, Luthy H, Eschler P Y, et al. Corrosion behavior of cobalt-chromium dental alloys doped with precious metals[J]. Biomaterials. 2005, 26: 4358
[13]  Huang Y Z, Blackwood D J. Characterization of titanium oxide film grown in 0.9 % NaCl at different sweep rates[J]. Electrochim. Acta, 2005, 51: 1099.
[14]  Badawy W A, Fathi A M, El-Sherief R M, et al. Electrochemical and biological behaviors of porous titania (TiO2) in simulated body fluids for implantation in human bodies[J]. J. Alloys Compd., 2008, 475: 911.
[15]  Oliveira N T C, Ferreira E A, Duarte L T, et al. Corrosion resistance of anodic oxides on the Ti-50Zr and Ti-13Nb-13Zr alloys[J]. Electrochim. Acta, 2006, 51: 2068.
[16]  Guo W Y, Sun J, Wu J S. Electrochemical and XPS studies of corrosion behavior of Ti-23Nb-0.7Ta-2Zr-O alloy in Ringer's solution[J]. Mater. Chem. Phys., 2009, 113(2-3): 816
[17]  Zhou Y L, Niinomi M, Akahori T, et al. Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications[J]. Mater. Sci. Eng., 2005, A398: 28.
[18]  Palit G C, Elayaperumal K. Passivity and pitting of corrosion resistant pure metals Ta, Nb, Ti, Zr, Cr and A1 in chloride solutions[J]. Corros. Sci., 1978, 18(2): 173.
[19]  Liu G Q, Zhu Z Y, Ke W, et al. Corrosion behavior of stainless steels and nickel-based alloys in acetic acid solutions containing bromide ions[J]. Corrosion, 2001, 57(8): 738.
[20]  Yang G, Li Y, Lin H. Experimental studies on the local corrosion of low alloy steels in 3.5 % NaCl[J]. Corros. Sci., 2001, 43(3): 397.
[21]  Robert G K. Passivity and localized corrosion[A]. Robert G K, John R S, David W S, et al. Electrochemical techniques in corrosion science and engineering[C]. NewYork: Marcel Dekker A G, 2003: 74.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133