Luan T C, Eckert R E, Albright L F. Gaseous pretreatment of high-alloy steels used in ethylene furnaces: pretreatment of Incoloy 800 [J]. Ind. Eng. Chem. Res., 2003, 42(20): 4741.
[10]
Millward G R, Evans H E, Aindow M, et al. The influence of oxide layers on the initiation of carbon deposition on stainless steel[J]. Oxid. Met., 2001, 56(3): 231.
[11]
Geng S J, Zhu J H, Lu Z G. Investigation on haynes 242 alloy as SOFC interconnect in simulated anode environment[J].Electrochem. Solid State Lett., 2006, 9(4): 211.
[12]
Jian P, Jian L, Bing H, et al. Oxidation kinetics and phase evolution of a Fe-16Cr alloy in simulated SOFC cathode atmosphere [J]. J. Power Sources, 2006, 158(1): 354.
[13]
Zurek J, Young D J, Essuman E, et al. Growth and adherence of chromia based surface scales on Ni-base alloys in high-and low-PO2 gases[J]. Mater. Sci. Eng., 2008, A477(1): 259.
[14]
Holmen A, Lindvaag O A, Trimm D L. Coke formation during steam cracking of hydrocarbons. Part 2. Effect of preoxidation and prereduction of the reactor surface[J]. J. Chem. Technol. Biotechnol., 1985, 35(7): 358.
[15]
Essuman E, Meier G H, Zurek J, et al. Protective and non-protective scale formation of NiCr alloys in water vapour containing high- and low-PO2 gases[J]. Corros. Sci., 2008,50(6): 1753.
[16]
Mikkelsen L, Linderoth S. High temperature oxidation of Fe-Cr alloy in O2-H2-H2O atmospheres: microstructure and kinetics [J]. Mater. Sci. Eng., 1995, A361(8): 198.
[17]
Burton B. A theoretical upper limit to Coble creep strain resulting from concurrent grain growth [J]. J. Mater. Sci., 1993, 28(18): 4900.
[18]
Hansson A N, Somers M A J. Influence of the oxidation environment on scale morphology and oxidation rate of Fe-22Cr [J].Mater. High Temp., 2005, 3(4): 223.
[19]
Liu K, Luo J, Johnson C, et al. Conducting oxide formation and mechanical endurance of potential solid-oxide fuel cell interconnects in coal syngas environment [J]. J. Power Sources,2008, 183(1): 247.
[20]
Othman N K, Othman N, Zhang J, et al. Effects of water vapour on isothermal oxidation of chromia-forming alloys in Ar/O2 and Ar/H2 atmospheres [J]. Corros. Sci., 2009,193(1): 136.
[21]
Raynaud G M, Rapp R A. In-situ observation of whiskers, pyramids and pits during the high-temperature oxidation of metals[J]. Oxid. Met., 1984, 21(1): 89.
[22]
Hansel M, Quadakkers W J, Young D J. Role of water vapor in chromia-scale growth at low oxygen partial pressure[J]. Oxid.Met., 2003, 59(3-4): 285.
Polman E A, Fransen T, Gellings P J. Oxidation kinetics ofchromium and morphological phenomena[J]. Oxid. Met., 1989, 32(5):433.
[25]
Rabbani F, Ward L P, Strafford K N. A comparison of the growth kinetics and scale morphology for three superalloys at 930℃ in air and low PO2 environments[J]. Oxid. Met., 2000, 54(1):139.
[26]
Swaminathan S, Spiegel M. Effect of alloy composition on the selective oxidation of ternary Fe-Si-Cr, Fe-Mn-Cr model alloys[J]. Surf. Interface Anal., 2008, 40(3-4): 268.
[27]
Liu Y. Performance evaluation of several commercial alloys in a reducing environment [J]. J. Power Sources, 2008, 179(1):286.
[28]
Brylewski T, Nanko M, Maruyama T, et al. Application of Fe-16Cr ferritic alloy to interconnector for a solid oxide fuel cell[J]. Solid State Ionics, 2001, 143(2): 131.
[29]
Li H, Zheng Y, Benum L W, et al. Carburization behaviour of Mn-Cr-O spinel in high temperature hydrocarbon cracking environment[J]. Corros. Sci., 2009, 51(10): 2336.
[30]
Brylewski T, Maruyama T, Nanko M, et al. TG measurements of the oxidation kinetics of Fe-Cr alloy with regard to its application as a separator in SOFC[J]. J. Therm. Anal. Calorim.,1999, 55(2): 681.
[31]
England D M, Virkar A V. Oxidation kinetics of some nickel-based superalloy foils in humidified hydrogen and electronic resistance of the oxide scale formed part II[J]. J. Electrochem.Soc., 2001, 148(4): A330.
[32]
Hansson A N, Somers M A J. Influence of the oxidation environment on scale morphology and oxidation rate of Fe-22Cr [J].Mater. High Temp., 2005, 22(3-4): 223.
[33]
Polman E A, Fransen T, Gellings P J. Oxidation kinetics of chromium and morphological phenomena[J]. Oxid. Met., 1989, 32(5): 433.
[34]
Sabioni A, Huntz A, Luz E, et al. Comparative study of high temperature oxidation behaviour in AISI 304 and AISI 439 stainless steels [J]. Mater. Res., 2003, 6 (2): 179.
[35]
Kurokawa H, Kawamura K, Maruyama T. Oxidation behavior of Fe-16Cr alloy interconnect for SOFC under hydrogen potential gradient [J]. Solid State Ionics., 2004, 168(10): 13.
[36]
Huntz A M, Bague V, Beauple G, et al. Effect of silicon on the oxidation resistance of 9% Cr steels[J]. Appl. Surf. Sci., 2003, 207(1-4): 255.
[37]
Polman E A, Fransen T, Gellings P J. Oxidation kinetics of chromium and morphological phenomena[J]. Oxid. Met., 1989, 32(5):433.
[38]
Geng S J, Zhu J H, Lu Z G. Investigation on haynes 242 alloy as SOFC interconnect in simulated anode environment[J].Electrochem. Solid State Lett., 2006, 9(4): A211.
[39]
Hou P Y, Stringer J. The effect of reactive element additions on the selective oxidation, growth and adhesion of chromia scales [J]. Mater. Sci. Eng., 1995, A202(5): 1.
[40]
Mikkelsen L. High temperature oxidation of iron-chromium alloys[D]. Roskilde: Risoe National Laboratory, 2003.