Sunil K B, Balla S P, Vivekanand K, et al. Methods for making alloy 600 resistant to sensitization and intergranular corrosion [J]. Corros. Sci., 2013, 70: 55
[2]
Ashour E A, Schneider F, Mummert K, et al. Stress corrosion cracking of Inconel 600 in aqueous solutions at elevated temperature Part II: Effects of chloride and sulphate ions on the electrochemical behaviour of Inconel 600 [J]. Mater. Corros., 1997, 48(7): 409
[3]
Xiao J, Prud'homme N, Li N, et al. Influence of humidity on high temperature oxidation of Inconel 600 alloy: Oxide layers and residual stress study [J]. Appl. Surf. Sci., 2013, 284: 446
[4]
Kulka M, Dziarski P, Makuch N, et al. Microstructure and properties of laser-borided Inconel 600-alloy [J]. Appl. Surf. Sci., 2013, 284: 757
[5]
Hwang S S, Kim H P. SCC analysis of alloy 600 tubes from a retired steam generator [J]. J. Nucl. Mater., 2013, 440(1-3): 129
[6]
Dutta R S, Tewari R, De P K. Effects of heat-treatment on the extent of chromium depletion and caustic corrosion resistance of Alloy 690 [J]. Corros. Sci., 2007, 49(2): 303
[7]
Li X H, Wang J Q, Han E H, et al. Corrosion behavior for Alloy 690 and Alloy 800 tubes in simulated primary water [J]. Corros. Sci., 2013, 67: 169
[8]
Tan J B, Wu X Q, Han E H, et al. Role of TiN inclusion on corrosion fatigue behavior of Alloy 690 steam generator tubes in borated and lithiated high temperature water [J]. Corros. Sci., 2014, 88: 349
[9]
Hur D H, Lee D H. Effect of solid solution carbon on stress corrosion cracking of Alloy 600 in a primary water at 360 ℃ [J]. Mater.Sci. Eng., 2014, A603: 129
[10]
Scott P M. An overview of internal oxidation as a possible explanation of intergranular stress corrosion cracking of alloy 600 in PWRs
[11]
Young B A, Gao X S, Srivatsan T S, et al. The response of alloy 690 tubing in a pressurized water reactor environment [J]. Mater.Design, 2007, 28(2): 373
[12]
Flis J. Role of oxide films in stress corrosion cracking of mild steel in nitrate solutions [J]. Corros. Sci., 1975, 15(6-12): 553
[13]
Cubicciotti D. Equilibrium chemistry of nitrogen and potential-pH diagrams for the Fe-Cr-H 2 O system in bwr water [J]. J. Nucl. Mater., 1989, 167: 241
[14]
Combrade P, Scott P M, Foucault M, et al. Oxidation of Ni base alloys in PWR water: oxide layers and associated damage to the base metal [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors [C]. Slat Late City: TMS, 2005, 883
[15]
Machet A, Galtayries A, Zanna S, et al. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy [J]. Electrochim. Acta, 2004, 49(22/23): 3957
[16]
Sennour M, Marchetti L, Martin F, et al. A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor [J]. J. Nucl. Mater., 2010, 402(2/3): 147
[17]
Kumai C S, Devine T M. Influence of oxygen concentration of 288 ℃ water and alloy composition on the films formed on Fe-Ni-Cr alloys [J]. Corrosion, 2007, 63(12): 1101
[18]
Kumai C S, Devine T M. Oxidation of iron in 288 ℃, oxygen-containing water [J]. Corrosion, 2005, 61(3): 201
[19]
Nakamura K, Era S, Ozaki Y, et al. Conformational changes in seventeen cystine disulfide bridges of bovine serum albumin proved by Raman spectroscopy [J]. FEBS Lett., 1997, 417(3): 375
[20]
Kadleikova M,Breza J, Vesely M, et al. Raman spectra of synthetic sapphire [J]. Microelectr. J., 2001, 32(12): 955
[21]
Wang F, Harrington S, Devine T M. In situ investigation of the passive films formed on chromium in aqueous (pH=8.4) borate buffer and aqueous chloride solutions [J]. Electrochem. Soc. Trans., 2007,
[22]
Oblonsky L J, Devine T M. A surface enhanced Raman spectroscopic study of the passive films formed in borate buffer on iron, nickel, chromium and stainless steel [J]. Corros. Sci., 1995, 37(1): 17
[23]
Wang F, Devine T M. In-situ surface enhanced Raman spectroscopy investigation of surface film formed on nickel and chromium in high-temperature and high-pressure water [J]. Atomic Energy Sci.Technol., 2013, 47(Suppl.): 7
[24]
Farrow R L, Benner R E, Nagelberg A S, et al. Characterization of surface oxides by Raman spectroscopy [J]. Thin Solid Films, 1980,
[25]
Chen M, Shu J F, Xie X D, et al. Natural CaTi 2 O 4 -structured FeCr 2 O 4 polymorph in the Suizhou meteorite and its significance in mantle mineralogy [J]. Geochim. Cosmochim. Acta, 2003, 67(20): 3937
[26]
Marchetti L, Perrin S, Wouters Y, et al. Photoelectrochemical study of nickel base alloys oxide films formed at high temperature and high pressure water [J]. Electrochim. Acta, 2010, 55(19): 5384
[27]
Panter J, Viguier B, Cloue J M, et al. Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600 [J]. J. Nucl. Mater., 2006, 348(1/2): 213
[28]
Kim J H, Hwang S. In-situ raman spectroscopic study of oxide films on alloy 600 in simulated PWR water [A]. Eleventh International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Stevenson: ANS, 2003, 51