Buchheit R G, Guan H, Mahajanam S, et al. Active corrosion protection and corrosion sensing in chromate- free organic coatings [J]. Prog. Org. Coat., 2003, 47(3): 174
[2]
Shchukin D G, Zheludkevich M, Yasakau K, et al. Layer-by-layer assembled nanocontainers for self- healing corrosion protection [J]. Adv. Mater., 2006, 18(13): 1672
[3]
Yang H, van Ooij W J. Plasma-treated triazole as a novel organic slow- release paint pigment for corrosion control of AA2024- T3 [J]. Prog. Org. Coat., 2004, 50(3): 149
[4]
Borisova D, Mo?hwald H, Shchukin D G. Mesoporous silica nanoparticles for active corrosion protection [J]. ACS Nano, 2011, 5(3): 1939
[5]
Skorb E V, Fix D, Andreeva D V, et al. Surface-modified mesoporous SiO2 containers for corrosion protection [J]. Adv. Funct. Mater., 2009, 19(15): 2373
[6]
Lamaka S V, Karavai O V, Bastos A C, et al. Monitoring local spatial distribution of Mg2 + , pH and ionic currents [J]. Electrochem. Commun., 2008, 10(2): 259
[7]
Lamaka S V, Taryba M G, Zheludkevich M L, et al. Novel solidcontact ion- selective microelectrodes for localized potentiometric measurements [J]. Electroanalysis, 2009, (21): 2447
[8]
Lamaka S, Souto R M, Ferreira M A R G. In situvisualization of local corrosion by scanning ion-selective electrode technique (SIET) [J]. Microscopy, 2010, 3: 2162
[9]
Bastos A C, Zheludkevich M L, Ferreira M G S. A SVET investigation on the modification of zinc dust reactivity [J]. Prog. Org. Coat., 2008, 63(3): 282
[10]
Custódio J V, Agostinho S M L, Sim Es A M P. Electrochemistry and surface analysis of the effect of benzotriazole on the cut edge corrosion of galvanized steel [J]. Electrochim. Acta, 2010, 55(20): 5523
[11]
Kallip S, Bastos A C, Zheludkevich M L, et al. A multi-electrode cell for high- throughput SVET screening of corrosion inhibitors [J]. Corros. Sci., 2010, 52(9): 3146
[12]
Montemor M, Trabelsi W, Lamaka S, et al. The synergistic combination of bis- silane and CeO2·ZrO2 nanoparticles on the electrochemical behaviour of galvanised steel in NaCl solutions [J]. Electrochim. Acta, 2008, 53(20): 5913
[13]
Karavai O V, Bastos A C, Zheludkevich M L, et al. Localized electrochemical study of corrosion inhibition in microdefects on coated AZ31 magnesium alloy [J]. Electrochim. Acta, 2010, 55(19): 5401
[14]
Taryba M, Lamaka S V, Snihirova D, et al. The combined use of scanning vibrating electrode technique and micro-potentiometry to assess the self-repair processes in defects on“smart”coatings applied to galvanized steel [J]. Electrochim. Acta, 2011, 56(12): 4475
[15]
Borisova D, Mohwald H, Shchukin D G. Mesoporous silica nanoparticles for active corrosion protection [J]. ACS Nano, 2011, 5(3): 1939
[16]
González-García Y, García S J, Hughes A E, et al. A combined redox- competition and negative-feedback SECM study of self-healing anticorrosive coatings [J]. Electrochem. Commun., 2011, 13 (10): 1094
[17]
Sim Es A M, Bastos A C, Ferreira M G, et al. Use of SVET and SECM to study the galvanic corrosion of an iron-zinc cell [J]. Corros. Sci., 2007, 49(2): 726
[18]
Akid R, Mills D. A comparison between conventional macroscopic and novel microscopic scanning electrochemical methods to evaluate galvanic corrosion [J]. Corros. Sci., 2001, 43(7): 1203
[19]
Deshpande K B. Numerical modeling of micro- galvanic corrosion [J]. Electrochim. Acta, 2011, 56(4): 1737
[20]
Murer N, Oltra R, Vuillemin B, et al. Numerical modelling of the galvanic coupling in aluminium alloys: A discussion on the application of local probe techniques [J]. Corros. Sci., 2010, 52(1): 130
[21]
Jin T Y, Cheng Y F. In situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel [J]. Corros. Sci., 2011, 53(2): 850
[22]
Akid R, Garma M. Scanning vibrating reference electrode technique: A calibration study to evaluate the optimum operating parameters for maximum signal detection of point source activity [J]. Electrochim. Acta, 2004, 49(17): 2871
[23]
B?hm S, Mcmurray H N, Powell S M, et al. Photoelectrochemical investigation of corrosion using scanning electrochemical techniques [J]. Electrochim. Acta, 2000, 45(14): 2165
[24]
Benham W E. Waves associated with moving corpuscles [J]. Nature, 1938, 142: 160
[25]
Thornhill R S, Evans U R. 109. The electrochemistry of the rusting process along a scratch-line on iron [J]. J. Chem. Soc. (Resumed), 1938: 614
[26]
Thornhill R S, Evans U R. 402. The electrochemistry of the corrosion of partly immersed zinc [J]. J. Chem. Soc. (Resumed), 1938: 2109
[27]
Trethewey K R, Sargeant D A, Marsh D J, et al. Applications of the scanning reference electrode technique to localized corrosion [J]. Corros. Sci., 1993, 35(1): 127
[28]
Voruganti V S, Luft H B. Scanning reference electrode technique for the investigation of preferential corrosion of weldments in offshore applications [J]. Corrosion, 1991, 47(5): 343
[29]
Ramos R, Zlatev R, Stoytcheva M, et al. Novel SVET approach and its application for rapid pitting corrosion studies of chromatized aerospatiale aluminum alloy [J]. ECS Tran., 2010, 29(1): 23
[30]
Jaffe L F, Nuccitelli R. An ultrasensitive vibrating probe for measuring steady extracellular currents [J]. J. Cell Biol., 1974, 63(2): 614
[31]
Isaacs H S, Kissel G. Surface preparation and pit propagation in stainless steels [J]. J. Electrochem. Soc., 1972, 119(12): 1628
[32]
Isaacs H S. The use of the scanning vibrating electrode technique for detecting defects in ion vapor-deposited aluminum on steel [J]. Corrosion, 1987, 43(10): 594
[33]
Isaacs H S. The measurement of the galvanic corrosion of soldered copper using the scanning vibrating electrode technique [J]. Corros. Sci., 1988, 28(6): 547
[34]
Marcus P, Mansfeld F B. Analytical Methods in Corrosion Science and Engineering [M]. NewYork: CRC Press, 2005
[35]
Bard A J, Fan F R F, Kwak J, et al. Scanning electrochemical microscopy: Introduction and principles [J]. Anal. Chem., 1989, 61 (2): 132
[36]
Sun P, Laforge F O, Mirkin M V. Scanning electrochemical microscopy in the 21st century [J]. Phys. Chem. Chem. Phys., 2007, 9 (7): 802
[37]
Gabrielli C, Huet F, Keddam M, et al. Scanning electrochemical microscopy imaging by means of high-frequency impedance measurements in feedback mode [J]. J. Phys. Chem., 2004, 108(31)B: 11620 [
[38]
Gabrielli C, Joiret S, Keddam M, et al. Development of a coupled SECM-EQCM technique for the study of pitting corrosion on iron [J]. J. Electrochem. Soc., 2006, 153(3): B68
[39]
Etienne M, Schulte A, Mann S, et al. Constant-distance mode scanning potentiometry. 1. Visualization of calcium carbonate dissolution in aqueous solution [J]. Anal. Chem., 2004, 76(13): 3682
[40]
Isaacs H S. The effect of height on the current distribution measured with a vibrating electrode probe [J]. J. Electrochem. Soc., 1991, 138(3): 722
[41]
Vuillemin B, Philippe X, Oltra R, et al. SVET, AFM and AES study of pitting corrosion initiated on MnS inclusions by microinjection [J]. Corros. Sci., 2003, 45(6): 1143
[42]
Aldykiewicz A J, Isaacs H S. Dissolution characteristics of duplex stainless steels in acidic environments [J]. Corros. Sci., 1998, 40 (10): 1627
[43]
Bayet E, Huet F, Keddam M, et al. Local electrochemical impedance measurement: Scanning vibrating electrode technique in ac mode [J]. Electrochim. Acta, 1999, 44(24): 4117
[44]
Hayase M, Hatsuzawa T, Fukuizumi A. Electric field analysis in a dilute solution for the vibrating electrode technique [J]. J. Electroanal. Chem., 2002, 537(1): 173
[45]
Ramos R, Zlatev R, Valdez B, et al. LabVIEW 2010 computer vision platform based virtual instrument and its application for pitting corrosion study [J]. J. Anal. Methods Chem., 2013, 2013: 193230
[46]
Krawiec H, Vignal V, Oltra R. Use of the electrochemical microcell technique and the SVET for monitoring pitting corrosion at MnS inclusions [J]. Electrochem. Commun., 2004, 6(7): 655
[47]
Tang X, Cheng Y. Localized dissolution electrochemistry at surface irregularities of pipeline steel [J]. Appl. Surf. Sci., 2008, 254 (16): 5199
[48]
Stockert L. Susceptibility to crevice corrosion and metastable pitting of stainless steels [J]. Mater. Sci. Forum. 1991, 44/45: 313
[49]
Laycock N J, Stewart J, Newman R C. The initiation of crevice corrosion in stainless steels [J]. Corros. Sci., 1997, 39(10): 1791
[50]
Isaacs H S. The localized breakdown and repair of passive surfaces during pitting [J]. Corros. Sci., 1989, 29(2/3): 313
[51]
Izquierdo J, Nagy L, González S, et al. Resolution of the apparent experimental discrepancies observed between SVET and SECM for the characterization of galvanic corrosion reactions [J]. Electrochem. Commun., 2013, 27: 50
[52]
Thébault F, Vuillemin B, Oltra R, et al. Protective mechanisms occurring on zinc coated steel cut-edges in immersion conditions [J]. Electrochim. Acta, 2011, 56(24): 8347
[53]
Thébault F, Vuillemin B, Oltra R, et al. Investigation of self-healing mechanism on galvanized steels cut edges by coupling SVET and numerical modeling [J]. Electrochim. Acta, 2008, 53(16): 5226
[54]
Thébault F, Vuillemin B, Oltra R, et al. Modeling bimetallic corrosion under thin electrolyte films [J]. Corros. Sci., 2011, 53(1): 201
[55]
Isaacs H S. Initiation of stress corrosion cracking of sensitized type 304 stainless steel in dilute thiosulfate solution [J]. J. Electrochem. Soc., 1988, 135(9): 2180
[56]
Zhang G A, Cheng Y F. Micro- electrochemical characterization and Mott- Schottky analysis of corrosion of welded X70 pipeline steel in carbonate/bicarbonate solution [J]. Electrochim. Acta, 2009, 55(1): 316
[57]
Franklin M, White D C, Little B, et al. The role of bacteria in pit propagation of carbon steel [J]. Biofouling, 2000, 15(1-3): 13
[58]
Iken H, Etcheverry L, Bergel A, et al. Local analysis of oxygen reduction catalysis by scanning vibrating electrode technique: A new approach to the study of biocorrosion [J]. Electrochim. Acta, 2008, 54(1): 60
[59]
Jamil H E, Shriri A, Boulif R, et al. Electrochemical behaviour of amino alcohol- based inhibitors used to control corrosion of reinforcing steel [J]. Electrochim. Acta, 2004, 49(17): 2753
[60]
Forget L, Wilwers F, Delhalle J, et al. Surface modification of aluminum by n- pentanephosphonic acid: XPS and electrochemical evaluation [J]. Appl. Surf. Sci., 2003, 205(1): 44
[61]
Zubielewicz M, Gnot W. Mechanisms of non- toxic anticorrosive pigments in organic waterborne coatings [J]. Prog. Org. Coat., 2004, 49(4): 358
[62]
Jadhav N, Vetter C A, Gelling V J. The effect of polymer morphology on the performance of a corrosion inhibiting polypyrrole/aluminum flake composite pigment [J]. Electrochim. Acta, 2013, 102: 28
[63]
Bierwagen G, Battocchi D, Sim Es A, et al. The use of multiple electrochemical techniques to characterize Mg-rich primers for Al alloys [J]. Prog. Org. Coat., 2007, 59(3): 172
[64]
Abreu C M, Izquierdo M, Keddam M, et al. Electrochemical behaviour of zinc-rich epoxy paints in 3%NaCl solution [J]. Electrochim. Acta, 1996, 41(15): 2405
[65]
Morcillo M, Barajas R, Feliu S, et al. A SEM study on the galvanic protection of zinc-rich paints [J]. J. Mater. Sci., 1990, 25(5): 2441
[66]
Hare C H. Corrosion Control of Steel by Organic Coatings [M]. Massachusetts: Uhlig's Corrosion Handbook, Third Edition. 2000: 971
[67]
Sim?es A M, Battocchi D, Tallman D E, et al. SVET and SECM imaging of cathodic protection of aluminium by a Mg-rich coating [J]. Corros. Sci., 2007, 49(10): 3838
[68]
Sim?es A M, Battocchi D, Tallman D, et al. Assessment of the corrosion protection of aluminium substrates by a Mg- rich primer: EIS, SVET and SECM study [J]. Prog. Org. Coat., 2008, 63(3): 260
[69]
Alvarez-Pampliega A, Taryba M G, van den Bergh K, et al. Study of local Na+ and Cl? distributions during the cut-edge corrosion of aluminum rich metal-coated steel by scanning vibrating electrode and micro-potentiometric techniques [J]. Electrochim. Acta, 2013, 102: 319
[70]
Long T E. Self- healing materials [J]. Macromol. Chem. Phys., 2009, 210(8): 698
[71]
Zheludkevich M L, Shchukin D G, Yasakau K A, et al. Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor [J]. Chem. Mater., 2007, 19(3): 402
[72]
Lamaka S V, Zheludkevich M L, Yasakau K A, et al. Nanoporous titania interlayer as reservoir of corrosion inhibitors for coatings with self-healing ability [J]. Prog. Org. Coat., 2007, 58(2): 127
He J, Gelling V J, Tallman D E, et al. Conducting polymers and corrosion III. A scanning vibrating electrode study of poly (3-octyl pyrrole) on steel and aluminum [J]. J. Electrochem. Soc., 2000, 147 (10): 3667
[75]
He J, Tallman D E, Bierwagen G P. Conjugated polymers for corrosion control: Scanning vibrating electrode studies of polypyrrolealuminum alloy interactions [J]. J. Electrochem. Soc., 2004, 151(12): B644
[76]
Souto R M, González-García Y, Bastos A C, et al. Investigating corrosion processes in the micrometric range: A SVET study of the galvanic corrosion of zinc coupled with iron [J]. Corros. Sci., 2007, 49 (12): 4568
[77]
Deshpande K B. Experimental investigation of galvanic corrosion: Comparison between SVET and immersion techniques [J]. Corros. 378 4期 Sci., 2010, 52(9): 2819
[78]
Deshpande K B. Validated numerical modelling of galvanic corrosion for couples: Magnesium alloy (AE44)-mild steel and AE44-aluminium alloy (AA6063) in brine solution [J]. Corros. Sci., 2010, 52(10): 3514