全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

扫描振动电极技术在腐蚀研究中的应用

DOI: 10.11903/1002.6495.2014.305, PP. 375-380

Keywords: 扫描振动电极技术,腐蚀,应用

Full-Text   Cite this paper   Add to My Lib

Abstract:

扫描振动电极(SVET)技术是研究局部腐蚀过程的一个新方法,它在不接触试样的情况下,通过微小振荡电极探针尖端感应金属表面介质中的氧化还原型离子,测得溶液中离子的电位梯度变化,并将测得的电位信号转化为相应的直流电流信号。本文主要介绍了该技术的发展历史和测量原理,并重点讨论了该技术在腐蚀中的应用。

References

[1]  Buchheit R G, Guan H, Mahajanam S, et al. Active corrosion protection and corrosion sensing in chromate- free organic coatings [J]. Prog. Org. Coat., 2003, 47(3): 174
[2]  Shchukin D G, Zheludkevich M, Yasakau K, et al. Layer-by-layer assembled nanocontainers for self- healing corrosion protection [J]. Adv. Mater., 2006, 18(13): 1672
[3]  Yang H, van Ooij W J. Plasma-treated triazole as a novel organic slow- release paint pigment for corrosion control of AA2024- T3 [J]. Prog. Org. Coat., 2004, 50(3): 149
[4]  Borisova D, Mo?hwald H, Shchukin D G. Mesoporous silica nanoparticles for active corrosion protection [J]. ACS Nano, 2011, 5(3): 1939
[5]  Skorb E V, Fix D, Andreeva D V, et al. Surface-modified mesoporous SiO2 containers for corrosion protection [J]. Adv. Funct. Mater., 2009, 19(15): 2373
[6]  Lamaka S V, Karavai O V, Bastos A C, et al. Monitoring local spatial distribution of Mg2 + , pH and ionic currents [J]. Electrochem. Commun., 2008, 10(2): 259
[7]  Lamaka S V, Taryba M G, Zheludkevich M L, et al. Novel solidcontact ion- selective microelectrodes for localized potentiometric measurements [J]. Electroanalysis, 2009, (21): 2447
[8]  Lamaka S, Souto R M, Ferreira M A R G. In situvisualization of local corrosion by scanning ion-selective electrode technique (SIET) [J]. Microscopy, 2010, 3: 2162
[9]  Bastos A C, Zheludkevich M L, Ferreira M G S. A SVET investigation on the modification of zinc dust reactivity [J]. Prog. Org. Coat., 2008, 63(3): 282
[10]  Custódio J V, Agostinho S M L, Sim Es A M P. Electrochemistry and surface analysis of the effect of benzotriazole on the cut edge corrosion of galvanized steel [J]. Electrochim. Acta, 2010, 55(20): 5523
[11]  Kallip S, Bastos A C, Zheludkevich M L, et al. A multi-electrode cell for high- throughput SVET screening of corrosion inhibitors [J]. Corros. Sci., 2010, 52(9): 3146
[12]  Montemor M, Trabelsi W, Lamaka S, et al. The synergistic combination of bis- silane and CeO2·ZrO2 nanoparticles on the electrochemical behaviour of galvanised steel in NaCl solutions [J]. Electrochim. Acta, 2008, 53(20): 5913
[13]  Karavai O V, Bastos A C, Zheludkevich M L, et al. Localized electrochemical study of corrosion inhibition in microdefects on coated AZ31 magnesium alloy [J]. Electrochim. Acta, 2010, 55(19): 5401
[14]  Taryba M, Lamaka S V, Snihirova D, et al. The combined use of scanning vibrating electrode technique and micro-potentiometry to assess the self-repair processes in defects on“smart”coatings applied to galvanized steel [J]. Electrochim. Acta, 2011, 56(12): 4475
[15]  Borisova D, Mohwald H, Shchukin D G. Mesoporous silica nanoparticles for active corrosion protection [J]. ACS Nano, 2011, 5(3): 1939
[16]  González-García Y, García S J, Hughes A E, et al. A combined redox- competition and negative-feedback SECM study of self-healing anticorrosive coatings [J]. Electrochem. Commun., 2011, 13 (10): 1094
[17]  Sim Es A M, Bastos A C, Ferreira M G, et al. Use of SVET and SECM to study the galvanic corrosion of an iron-zinc cell [J]. Corros. Sci., 2007, 49(2): 726
[18]  Akid R, Mills D. A comparison between conventional macroscopic and novel microscopic scanning electrochemical methods to evaluate galvanic corrosion [J]. Corros. Sci., 2001, 43(7): 1203
[19]  Deshpande K B. Numerical modeling of micro- galvanic corrosion [J]. Electrochim. Acta, 2011, 56(4): 1737
[20]  Murer N, Oltra R, Vuillemin B, et al. Numerical modelling of the galvanic coupling in aluminium alloys: A discussion on the application of local probe techniques [J]. Corros. Sci., 2010, 52(1): 130
[21]  Jin T Y, Cheng Y F. In situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel [J]. Corros. Sci., 2011, 53(2): 850
[22]  Akid R, Garma M. Scanning vibrating reference electrode technique: A calibration study to evaluate the optimum operating parameters for maximum signal detection of point source activity [J]. Electrochim. Acta, 2004, 49(17): 2871
[23]  B?hm S, Mcmurray H N, Powell S M, et al. Photoelectrochemical investigation of corrosion using scanning electrochemical techniques [J]. Electrochim. Acta, 2000, 45(14): 2165
[24]  Benham W E. Waves associated with moving corpuscles [J]. Nature, 1938, 142: 160
[25]  Thornhill R S, Evans U R. 109. The electrochemistry of the rusting process along a scratch-line on iron [J]. J. Chem. Soc. (Resumed), 1938: 614
[26]  Thornhill R S, Evans U R. 402. The electrochemistry of the corrosion of partly immersed zinc [J]. J. Chem. Soc. (Resumed), 1938: 2109
[27]  Trethewey K R, Sargeant D A, Marsh D J, et al. Applications of the scanning reference electrode technique to localized corrosion [J]. Corros. Sci., 1993, 35(1): 127
[28]  Voruganti V S, Luft H B. Scanning reference electrode technique for the investigation of preferential corrosion of weldments in offshore applications [J]. Corrosion, 1991, 47(5): 343
[29]  Ramos R, Zlatev R, Stoytcheva M, et al. Novel SVET approach and its application for rapid pitting corrosion studies of chromatized aerospatiale aluminum alloy [J]. ECS Tran., 2010, 29(1): 23
[30]  Jaffe L F, Nuccitelli R. An ultrasensitive vibrating probe for measuring steady extracellular currents [J]. J. Cell Biol., 1974, 63(2): 614
[31]  Isaacs H S, Kissel G. Surface preparation and pit propagation in stainless steels [J]. J. Electrochem. Soc., 1972, 119(12): 1628
[32]  Isaacs H S. The use of the scanning vibrating electrode technique for detecting defects in ion vapor-deposited aluminum on steel [J]. Corrosion, 1987, 43(10): 594
[33]  Isaacs H S. The measurement of the galvanic corrosion of soldered copper using the scanning vibrating electrode technique [J]. Corros. Sci., 1988, 28(6): 547
[34]  Marcus P, Mansfeld F B. Analytical Methods in Corrosion Science and Engineering [M]. NewYork: CRC Press, 2005
[35]  Bard A J, Fan F R F, Kwak J, et al. Scanning electrochemical microscopy: Introduction and principles [J]. Anal. Chem., 1989, 61 (2): 132
[36]  Sun P, Laforge F O, Mirkin M V. Scanning electrochemical microscopy in the 21st century [J]. Phys. Chem. Chem. Phys., 2007, 9 (7): 802
[37]  Gabrielli C, Huet F, Keddam M, et al. Scanning electrochemical microscopy imaging by means of high-frequency impedance measurements in feedback mode [J]. J. Phys. Chem., 2004, 108(31)B: 11620 [
[38]  Gabrielli C, Joiret S, Keddam M, et al. Development of a coupled SECM-EQCM technique for the study of pitting corrosion on iron [J]. J. Electrochem. Soc., 2006, 153(3): B68
[39]  Etienne M, Schulte A, Mann S, et al. Constant-distance mode scanning potentiometry. 1. Visualization of calcium carbonate dissolution in aqueous solution [J]. Anal. Chem., 2004, 76(13): 3682
[40]  Isaacs H S. The effect of height on the current distribution measured with a vibrating electrode probe [J]. J. Electrochem. Soc., 1991, 138(3): 722
[41]  Vuillemin B, Philippe X, Oltra R, et al. SVET, AFM and AES study of pitting corrosion initiated on MnS inclusions by microinjection [J]. Corros. Sci., 2003, 45(6): 1143
[42]  Aldykiewicz A J, Isaacs H S. Dissolution characteristics of duplex stainless steels in acidic environments [J]. Corros. Sci., 1998, 40 (10): 1627
[43]  Bayet E, Huet F, Keddam M, et al. Local electrochemical impedance measurement: Scanning vibrating electrode technique in ac mode [J]. Electrochim. Acta, 1999, 44(24): 4117
[44]  Hayase M, Hatsuzawa T, Fukuizumi A. Electric field analysis in a dilute solution for the vibrating electrode technique [J]. J. Electroanal. Chem., 2002, 537(1): 173
[45]  Ramos R, Zlatev R, Valdez B, et al. LabVIEW 2010 computer vision platform based virtual instrument and its application for pitting corrosion study [J]. J. Anal. Methods Chem., 2013, 2013: 193230
[46]  Krawiec H, Vignal V, Oltra R. Use of the electrochemical microcell technique and the SVET for monitoring pitting corrosion at MnS inclusions [J]. Electrochem. Commun., 2004, 6(7): 655
[47]  Tang X, Cheng Y. Localized dissolution electrochemistry at surface irregularities of pipeline steel [J]. Appl. Surf. Sci., 2008, 254 (16): 5199
[48]  Stockert L. Susceptibility to crevice corrosion and metastable pitting of stainless steels [J]. Mater. Sci. Forum. 1991, 44/45: 313
[49]  Laycock N J, Stewart J, Newman R C. The initiation of crevice corrosion in stainless steels [J]. Corros. Sci., 1997, 39(10): 1791
[50]  Isaacs H S. The localized breakdown and repair of passive surfaces during pitting [J]. Corros. Sci., 1989, 29(2/3): 313
[51]  Izquierdo J, Nagy L, González S, et al. Resolution of the apparent experimental discrepancies observed between SVET and SECM for the characterization of galvanic corrosion reactions [J]. Electrochem. Commun., 2013, 27: 50
[52]  Thébault F, Vuillemin B, Oltra R, et al. Protective mechanisms occurring on zinc coated steel cut-edges in immersion conditions [J]. Electrochim. Acta, 2011, 56(24): 8347
[53]  Thébault F, Vuillemin B, Oltra R, et al. Investigation of self-healing mechanism on galvanized steels cut edges by coupling SVET and numerical modeling [J]. Electrochim. Acta, 2008, 53(16): 5226
[54]  Thébault F, Vuillemin B, Oltra R, et al. Modeling bimetallic corrosion under thin electrolyte films [J]. Corros. Sci., 2011, 53(1): 201
[55]  Isaacs H S. Initiation of stress corrosion cracking of sensitized type 304 stainless steel in dilute thiosulfate solution [J]. J. Electrochem. Soc., 1988, 135(9): 2180
[56]  Zhang G A, Cheng Y F. Micro- electrochemical characterization and Mott- Schottky analysis of corrosion of welded X70 pipeline steel in carbonate/bicarbonate solution [J]. Electrochim. Acta, 2009, 55(1): 316
[57]  Franklin M, White D C, Little B, et al. The role of bacteria in pit propagation of carbon steel [J]. Biofouling, 2000, 15(1-3): 13
[58]  Iken H, Etcheverry L, Bergel A, et al. Local analysis of oxygen reduction catalysis by scanning vibrating electrode technique: A new approach to the study of biocorrosion [J]. Electrochim. Acta, 2008, 54(1): 60
[59]  Jamil H E, Shriri A, Boulif R, et al. Electrochemical behaviour of amino alcohol- based inhibitors used to control corrosion of reinforcing steel [J]. Electrochim. Acta, 2004, 49(17): 2753
[60]  Forget L, Wilwers F, Delhalle J, et al. Surface modification of aluminum by n- pentanephosphonic acid: XPS and electrochemical evaluation [J]. Appl. Surf. Sci., 2003, 205(1): 44
[61]  Zubielewicz M, Gnot W. Mechanisms of non- toxic anticorrosive pigments in organic waterborne coatings [J]. Prog. Org. Coat., 2004, 49(4): 358
[62]  Jadhav N, Vetter C A, Gelling V J. The effect of polymer morphology on the performance of a corrosion inhibiting polypyrrole/aluminum flake composite pigment [J]. Electrochim. Acta, 2013, 102: 28
[63]  Bierwagen G, Battocchi D, Sim Es A, et al. The use of multiple electrochemical techniques to characterize Mg-rich primers for Al alloys [J]. Prog. Org. Coat., 2007, 59(3): 172
[64]  Abreu C M, Izquierdo M, Keddam M, et al. Electrochemical behaviour of zinc-rich epoxy paints in 3%NaCl solution [J]. Electrochim. Acta, 1996, 41(15): 2405
[65]  Morcillo M, Barajas R, Feliu S, et al. A SEM study on the galvanic protection of zinc-rich paints [J]. J. Mater. Sci., 1990, 25(5): 2441
[66]  Hare C H. Corrosion Control of Steel by Organic Coatings [M]. Massachusetts: Uhlig's Corrosion Handbook, Third Edition. 2000: 971
[67]  Sim?es A M, Battocchi D, Tallman D E, et al. SVET and SECM imaging of cathodic protection of aluminium by a Mg-rich coating [J]. Corros. Sci., 2007, 49(10): 3838
[68]  Sim?es A M, Battocchi D, Tallman D, et al. Assessment of the corrosion protection of aluminium substrates by a Mg- rich primer: EIS, SVET and SECM study [J]. Prog. Org. Coat., 2008, 63(3): 260
[69]  Alvarez-Pampliega A, Taryba M G, van den Bergh K, et al. Study of local Na+ and Cl? distributions during the cut-edge corrosion of aluminum rich metal-coated steel by scanning vibrating electrode and micro-potentiometric techniques [J]. Electrochim. Acta, 2013, 102: 319
[70]  Long T E. Self- healing materials [J]. Macromol. Chem. Phys., 2009, 210(8): 698
[71]  Zheludkevich M L, Shchukin D G, Yasakau K A, et al. Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor [J]. Chem. Mater., 2007, 19(3): 402
[72]  Lamaka S V, Zheludkevich M L, Yasakau K A, et al. Nanoporous titania interlayer as reservoir of corrosion inhibitors for coatings with self-healing ability [J]. Prog. Org. Coat., 2007, 58(2): 127
[73]  骆鸿, 董超芳, 肖葵等. 金属腐蚀微区电化学研究进展(3)—扫描 振动电极技术[J]. 腐蚀与防护, 2009, 30(9): 631
[74]  He J, Gelling V J, Tallman D E, et al. Conducting polymers and corrosion III. A scanning vibrating electrode study of poly (3-octyl pyrrole) on steel and aluminum [J]. J. Electrochem. Soc., 2000, 147 (10): 3667
[75]  He J, Tallman D E, Bierwagen G P. Conjugated polymers for corrosion control: Scanning vibrating electrode studies of polypyrrolealuminum alloy interactions [J]. J. Electrochem. Soc., 2004, 151(12): B644
[76]  Souto R M, González-García Y, Bastos A C, et al. Investigating corrosion processes in the micrometric range: A SVET study of the galvanic corrosion of zinc coupled with iron [J]. Corros. Sci., 2007, 49 (12): 4568
[77]  Deshpande K B. Experimental investigation of galvanic corrosion: Comparison between SVET and immersion techniques [J]. Corros. 378 4期 Sci., 2010, 52(9): 2819
[78]  Deshpande K B. Validated numerical modelling of galvanic corrosion for couples: Magnesium alloy (AE44)-mild steel and AE44-aluminium alloy (AA6063) in brine solution [J]. Corros. Sci., 2010, 52(10): 3514

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133