全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Inconel600和Inconel690合金在模拟压水堆一回路水环境中生成的氧化膜特征研究

DOI: 10.11903/1002.6495.2015.018, PP. 339-344

Keywords: Inconel,600合金,Inconel,690合金,氧化膜,模拟压水堆一回路

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用原位表面增强型拉曼光谱(SERS)研究了Inconel600合金和Inconel690合金在高温高压水环境中生成的氧化膜特征。结果表明,Inconel600合金氧化膜的内层为薄且连续的Cr2O3,外层为非连续分布的FeCr2O4/NiFe2O4晶粒。Inconel690合金腐蚀氧化膜由单一连续的Cr2O3构成。从两个方面分析了本文SERS结果与他人研究成果之间的差异。一是合金在腐蚀的早期阶段形成Cr2O3内层,随着时间增加,转变成热力学稳定的富铬尖晶石;二是由不锈钢材料制成的高压釜和回路管道,溶液中含有大量的Fe2+和Ni2+,导致氧化膜中尖晶石相的生成。提出了合金氧化膜与腐蚀时间以及高压釜(含管道回路)材质都存在一定的关联性。

References

[1]  Machet A, Galtayries A, Zanna S, et al. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy [J]. Electrochim. Acta, 2004, 49(22/23): 3957
[2]  Ovanessian B T, Deleume J, Cloué J M, et al. Kinetic study of the low temperature internal oxidation of nickel based model alloys exposed to PWR primary water [J]. Mater. Sci. Forum, 2008, 595-598: 449
[3]  Combrade P, Scott P M, Foucault M, et al. Oxidation of Ni base alloys in PWR water: oxide layers and associated damage to the base metal [A]. Proceedings of the 12 th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors [C]. Slat Lake City: TMS, 2005: 883
[4]  Sennour M, Marchetti L, Perrin S, et al. Characterization of the oxide films formed at the surface of Ni-base alloys in pressurized water reactors primary coolant by transmission electron microscopy [J]. Mater. Sci. Forum, 2008, 595-598: 539
[5]  Huang F, Wang J Q, Han E-H, et al. Microstructural characteristics of the oxide films formed on Alloy 690 TT in pure and primary water at 325 ℃ [J]. Corros. Sci., 2013, 76: 52
[6]  Panter J, Viguier B, Cloue J M, et al. Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600 [J]. J.Nuclear Mater., 2006, 348(1/2): 213
[7]  Kim J H, Hwang II S. In-situ Raman spectroscopic study of oxide films on Alloy 600 in simulated PWR water [A]. Eleventh International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Stevenson: ANS, 2003: 51
[8]  Ziemniak S E, Hanson M. Corrosion behavior of NiCrFe Alloy 600 in high temperature, hydrogenated water [J]. Corros. Sci., 2006, 48(2): 498
[9]  Terachi T, Totsuka N, Yamada T, et al. Influence of dissolved Hydrogen on structure of oxide film on Alloy 600 formed in primary water of pressurized water reactors [J]. J. Nucl. Sci. Technol., 2003, 40(7): 509
[10]  Delabrouillel F, Legras L, Vaillant F, et al. Effect of the chromium content and strain on the corrosion of nickel based alloys in primary water of pressurized water reactors [A]. Proceedings of the 12 th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors [C]. Slat Lake City: TMS, 2005: 903
[11]  Carrette F, Lafont M C, Chatainier G, et al. Analysis and TEM examination of corrosion scales grown on Alloy 690 exposed to pressurized water at 325 ℃ [J]. Surf. Int. Anal., 2002, 34: 135
[12]  Sennour M, Marchetti L, Martin F, et al. A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor [J]. J. Nucl. Mater., 2010, 402: 147
[13]  Lu Z P, Shoji T, Yamazaki S. Characterization of microstructure, local deformation and microchemistry in Alloy 600 heat-affected zone and stress corrosion cracking in high temperature water [J]. Corros. Sci., 2012, 58: 211
[14]  Li X H, Wang J Q, Han E-H. Corrosion behavior for Alloy 690 and Alloy 800 tubes in simulated primary water [J]. Corros. Sci., 2013, 67: 169
[15]  Kumai C S, Devine T M. Influence of oxygen concentration of 288 ℃ water and alloy composition on the films formed on Fe-Ni-Cr alloys [J]. Corrosion, 2007, 63(12): 1101
[16]  Kumai C S, Devine T M. Oxidation of iron in 288 ℃, oxygen-containing water [J]. Corrosion, 2005, 61(3): 201
[17]  Nakamura K, Era S, Ozaki Y, et al. Conformational changes in seventeen cystine disulfide bridges of bovine serum albumin proved by Raman spectroscopy [J]. FEBS Lett., 1997, 417(3): 375
[18]  Kadleikova M, Breza J, Vesely M, et al. Raman spectra of synthetic sapphire [J]. Microelectr. J., 2001, 32(12): 955
[19]  Wang F, Harrington S, Devine T M. In situ investigation of the passive films formed on chromium in aqueous (pH=8.4) borate buffer and aqueous chloride solutions [J]. ECS. Trans., 2007, 3(31): 39
[20]  Oblonsky L J, Devine T M. A surface enhanced Raman spectroscopic study of the passive films formed in borate buffer on iron, nickel, chromium and stainless steel [J]. Corros. Sci., 1995, 37(1): 17
[21]  Wang F, Devine T M. In-situ surface enhanced Raman spectroscopy investigation of surface film formed on nickel and chromium in high-temperature and high-pressure water [J]. Atomic Energy Sci.Technol., 2013, 47(Suppl.): 7
[22]  Melendres C A, Pankuch M, Li Y S, et al. Surface enhanced Raman spectroelectrochemical studies of the corrosion films on iron and chromium in aqueous solution environments [J]. Electrochim.Acta, 1992, 37(15): 2747
[23]  Snyder R G, Ibers J A. O-H-O and O-D-O potential energy curves for chromous acid [J]. J. Chem. Phys., 1962, 36(6): 1356
[24]  Farrow R L, Benner R E, Nagelberg A S, et al. Characterization of surface oxides by Raman spectroscopy [J]. Thin Solid Films, 1980, 73(2): 353
[25]  Chen M, Shu J F, Xie X D, et al. Natural CaTi 2 O 4 -structured FeCr 2 O 4 polymorph in the Suizhou meteorite and its significance in mantle mineralogy [J]. Geochim. Cosmochim. Acta, 2003, 67(20): 3937
[26]  James R O, Healy T W. Adsorption of hydrolyzable metal ions at the oxide-water interface [J]. J. Colloid Int. Sci., 1972, 40(1): 42
[27]  Mintz T S, Devine T M. Influence of surface films on the susceptibility of Inconel 600 to stress corrosion cracking [J]. Key Eng. Mater., 2004, 261-263: 875

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133