Mariaca L, Bautista A, Rodriguez P, et al. Use of electrochemical noise for studying the rate of corrosion of reinforcements embedded in concrete [J]. Mater. Struct., 1997, 30(10): 613
[2]
Vti TM Virginia Technologies Inc. www. vatechnologies. com
[3]
Fuhr P L, Hustan D R.Corrosion detection inreinforced concrete roadways and bridges via embedded fiber optic sensors [J]. Smart Mater.Struct., 1998, 7(2): 217
[4]
Davis M A, Bellemore D G, Kersey A D. Distributed fiber Bragg grating strain sensing in reinforced concrete structural components [J]. Cement Concr. Composites, 1997, 19(1): 45
[5]
Maalej M, Karasaridis A, Pantazopoulou S, et al. Structural health monitoring of smart structures [J]. Smart Mater. Struct., 2002, 11: 581
[6]
Yuan L B, Ansari F. Embedding white light interferometer fiber optic strain sensor for concrete beam crack-tip opening monitorin [J]. Meas. Sci. Technol., 1998, 9: 261
[7]
Kuang K S C, Akmaluddin, Cantwell C J, et al. Fiber optic sensing for monitoring corrosion-induced damage [J]. Meas. Sci. Technol., 2003, 14: 205
江毅, 严云, Christopher K Y L.光纤光栅腐蚀传感器 [J]. 光子学报, 2006, 35(1): 96
[12]
Lin G, Lu J, Wang Z, Xiao S, etal. Study on the reduction of tensile strength of concrete due to triaxial compressive loading history [J]. Mag.Concr. Res., 2002, 54(2): 113
[13]
Fnine A, Buyle-Bodin F. Assessment of deteriorated concrete cover by high frequency ultrasonic waves [A]. Proceedings of the international symposium on NDT in civil engineering [C]. Berlin, 2003
[14]
Berriman J, Gan T H, Hitchins D A, et al. Non-contact ultrasonic interrogation of concrete [A]. Proceedings of the international symposium on NDT in civil engineering [C]. Berlin, 2003
[15]
Cho Y S. NDT response of spectral analysis of surface wave method to strength concrete structures [J]. J. Ultrason, 2002, 40: 227
[16]
Sato D, et al. Measurement technique of acquiring sodium chloride concentration by using near-infrared spectrum [A]. Proceedings of JSCE Annual Conference [C]. Japan, Kumamoto, 2001: 844
[17]
AlexanderM, Brad J P, Mette R G, et al. Monitoring reinforcement corrosion and corrosion-induced cracking using non-destructive x-ray attenuation measurements [J]. Cement Concr. Res., 2011, 41(11): 1085
[18]
Zhao Y X, Ren H Y, Hong D, et al. Composition and expansion coefficient of rust based on X-ray diffraction and thermal analysis [J].Corros. Sci., 2011, 53(5): 1646
[19]
ASTM C876-91, Standard test method for half-cell potentials of uncoated reinforcing steel in concrete[S]. 1999
Flis J, Pickering H W, Osseo-Asare K. Interpretation of impedance data for reinforcing steel in alkaline solution containing chlorides and acetates [J]. Electrochim. Acta, 1998, 43(12-13): 1921
[22]
John P B. The use of permanent corrosion monitoring in new and existing reinforced concrete structures [J]. Cement Concr. Composites, 2002, 24: 27
[23]
Yeih W, Huang R. Detection of the corrosion damage in reinforced concrete members by ultrasonic testing [J]. Cement Concr. Res., 1998, 28(7): 1071
[24]
Erdogdu S, Kondratova I L, Bremner T W. Determination of chloride diffusion coefficient of concrete using open-circuit potential measurements [J]. Cement Concr. Res., 2004, 34(4): 603
[25]
Choi Y S, Kim J G, Lee K M. Corrosion behavior of steel bar embedded in fly ash concrete [J]. Corros.Sci., 2006, 48(7): 1733
[26]
Montemor M F, Cunha M P, Ferreira M G, et al. Predicting Carbonation Depth in Low Calcium Fly Ash Concrete [J]. Cement Concr. Composites, 2002, 24(1): 45
ASTM STP 1137, Corrosion forms and control for infrastructure[S]. 1992
[29]
Feliu S, Andrade C, González J A, etal. A new method forin-situ measurement of electrical resistivity of reinforced concrete [J]. Mater. Struct., 1996, 29(6): 362
[30]
Glass G K, Page C L, Short N R. Factors affecting steel corrosion in carbonated mortars [J]. Corros. Sci., 1991, 32(12): 1283
[31]
López W, González J A. Influence of the degree of pore saturation on the resistivity of concrete and the corrosion rate of steel reinforcement [J]. Cement Concr. Res., 1993, 23(2): 368
[32]
Hope B B, Ip A K, Manning D G. Corrosion and electrical impedance in concrete [J]. Cement Concr. Res., 1985, 15(3): 525
[33]
Browne R D. Design prediction of the life for reinforced concrete in marine and other chloride environments [J]. Durab. Building Mater., 1982, 1(2): 113
[34]
Law D W, Millard S G, Bungey J H. Linear polarization resistance measurements using a potentiostatically controlled guard ring [J]. NDT. E. Int., 2000, 33(1): 15
[35]
Law D W, Millard S G, Bungey J H. Use of galvanostatic pulse measurements on active reinforcing concrete structures in corrosive environments in the Chinese chemical industry [J]. Br. Corros. J., 2001, 36(1): 75
[36]
Law D W, Millard S G, Bungey J H. Effect of electrode orientation on linear polarisation measurements using sensor controlled guard ring [J]. Br. Corros. J., 2000, 35(2): 136
[37]
Andrade C. On-site measurements of corrosion rate of reinforcements[J]. Constr. Building Mater., 2001, 15: 141
[38]
Song G L. Theoretical analysis of the measurement of polarization resistance in reinforced concrete [J]. Cement Concr. Composites, 22000, 22: 407
[39]
Wojtas H.Determination of corrosion rate of reinforcement with a modulated guard ring electrode; analysis of errors due to lateral current distribution [J]. Corros. Sci., 2004, 46: 1621
Mietz J, Isecke B. Monitoring of concrete structures with respect to rebar corrosion [J]. Constr. Building Mater., 1996, 10(5): 367
[44]
Holloway M, Sykes J M. Studies of the corrosion of mild steel in alkali-activated slag cement mortars with sodium chloride admixtures by a galvanostatic pulse method [J]. Corros. Sci., 2005, 47(12): 3097
[45]
Birbilis N, Nairn K M, Forsyth M. On the electrochemical response and interfacial properties of steel-Ca(OH)2 and the steel-concrete system measured using galvanostatic pulses [J]. Electrochim. Acta, 2004, 49(25): 4331
[46]
González J A, Cobo A, Gonzalez M N, et al. On-site determination of corrosion rate in reinforced concrete structures by use of galvanostatic pulses [J]. Corros. Sci., 2001, 43(4): 611
[47]
Sathiyanarayanan S, Natarajan P, Saravanan K, et al. Corrosion monitoring of steel in concrete by galvanostatic pulse technique[J]. Cement Concr. Composites, 2006, 28(7): 630
[48]
Birbilis N, Nairn K M, Forsyth M. Transient response analysis of steel in concrete [J]. Corros. Sci., 2003, 45(9): 1895
[49]
Newton C J, Sykes J M. A galvanostatic pulse technique for investigation of steel corrosion in concrete [J]. Corros. Sci., 1988, 28(11): 1051
Zhao Y T, Guo X P, Chen G Z, et al. Rapid determination of Tafel slopes by an integral method of coulostatically induced transients [J]. Corrosion, 2006, 62(3): 264
[56]
Alvarez R. Frequency domain transform and the coulostatic technique[A]. Corrosion 98 NACE [C]. Houston, 1998: 308
[57]
Glass G K, Hassanein A M, Buenfeld N R. Obtaining impedance information on the steel concrete interface[J]. Corrosion, 1998, 54(11): 887
[58]
Dawson J L. Corrosion Science [M]. Houston, NACE, 1978
[59]
Darowicki K. The application of impedance measurements for the determination of the probability of the course of corrosion processes [J]. Corros. Sci., 1997, 39(6): 1087
[60]
Darowicki K. Corrosion rate measurements by non-linear electrochemical impedance spectroscopy [J]. Corros. Sci., 1995, 37(6): 913
[61]
Andrade C, Alonso C. Corrosion rate monitoring in the laboratory and on-site[J]. Constr. Building Mater., 1996, 10(5): 315
Husain A, Al-Bahar S, Salam S A. Accelerated AC impedance testing for prequalification of marine construction materials [J]. Desalination, 2004, 165: 377
[66]
Morlidge J R. Electrochemical techniques for the detection of concrete corrosion inhibitors under simulated pore solution conditions [A]. Aston University One Day Conference [C]. Birmingham, British, 2000
[67]
Eden D A. Electrochemical noise analysis of Iron exposed to NaCl solutions of different corrosivity [J]. J. Electrochem. Soc., 1994, 141: 1402
[68]
Legat A, Zevnik C. The electrochemical noise of mild and stainless steel in various water solutions [J]. Corros. Sci., 1993, 35 (5-8): 1661
[69]
Legat A, Dolecek V. Corrosion monitoring system based on measurement and analysis of electrochemical noise [J]. Corrosion, 1995, 51: 295
[70]
Legat A. Corosion processes of steel in concrete characterized by means of electrochemical noise[J]. Electochem. Acta, 2004, 49: 2741
[71]
A1-Mazeedi H A A, Cottis R A. A practical evaluation of electrcochemical noise parameters as indicators of corosion type[J]. Electochem. Acta, 2004, 49: 2787
[72]
Takumi H. Electochemical noise analysis for estimation of corrosion rate of carbon steel in bicarbonate solution [J]. Corros. Sci., 2003, 45: 2093
[73]
Cottis R A. Interpretation of electrochemical noise data [J]. Corrosion, 2001, 57: 265
[74]
Cottis R A, Al-Awadhi M A A, Al-Mazeedi H, et al. Measures for the detection of localized corrosion with electrochemical noise [J] Electrochim. Acta, 2001, 46 (24-25): 3665
[75]
Bertocci U, Gabrielli C, Huet F, et al. Noise resistance applied to corrosion measurements [J]. J. Electrochem. Soc., 1997, 144(1): 31
[76]
Mansfeld F, Lee C C, Zhang G. Comparison of electrochemical impedance and noise data in the frequency domain [J]. Electrochim. Acta, 1998, 43(3-4): 435
[77]
Legat A, Dolecek V. Chaotic analysis of electrochemical noise measured on stainless steel [J]. J. Electrochem. Soc., 1995, 142: 1851
[78]
Leban M, Legat A, Dolecek V. Electrochemical noise during non-stationary corrosion processes [J]. Mater. Corros., 2001, 52(6): 418 3.0.CO;2-G target="_blank">
[79]
Aballe A, Bethencourt M, Botana F J, et al. Using wavelets transform in the analysis of electrochemical noise data [J]. Electrochim.Acta, 1999, 44(26): 4805
[80]
Wharton J A, Wood R J K, Mellor B G. Wavelet analysis of electrochemical noise measurements during corrosion of austenitic and superduplex stainless steels in chloride media [J]. Corros. Sci., 2003, 45(1): 97