全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

水环境中防腐涂层失效机理研究进展

, PP. 452-457

Keywords: 水环境,涂层失效,阴极剥离,阴极起泡

Full-Text   Cite this paper   Add to My Lib

Abstract:

综述了带有缺陷和无缺陷两种防腐涂层在水环境中的失效过程及机理.讨论了影响阴极剥离速率的因素,较为详尽地阐述了阴极剥离和阴极起泡的机制.

References

[1]  Hubbard J B, Nguyen T, Bentz D. A model of defect-mediated transport through amorphous menbranes [J]. J. Chem. Phys., 1992, 96(4): 3177
[2]  Nguyen T, Hubbard J B, Pommersheim J. Mathematical model for the degradation of intact coatings on steel exposed to electrolyte solutions [J]. Abstr. Am. Chem. Soc., 1992, 204: 36
[3]  Sato N. Some concepts of corrosion fundamentals [J]. Corros. Sci., 1987, 27(5): 421
[4]  S?rensen P A, Kiil S, Dam-Johansen K, et al. Anticorrosive coatings: a review [J]. J. Coat. Technol. Res., 2009, 6(2): 135
[5]  Leng A, Streckel H, Stratmann M. The delamination of polymeric coatings from steel. Part 2: First stage of delamination, effect of type and concentration of cations on delamination, chemical analysis of the interface [J]. Corros. Sci., 1999, 41: 579
[6]  S?rensen P A, Dam-Johansen K, Weinell C E, et al. Cathodic delamination of seawater immersed anticorrosive coatings: Mapping of parameters affecting the race [J]. Prog. Org. Coat., 2010, 68(4): 283
[7]  S?rensen P A, Kiil S, Dam-Johansen K, et al. Influence of substrate topography on cathodic delamination of anticorrosive coatings [J]. Prog. Org. Coat., 2009, 64(2): 142
[8]  S?rensen P A, Kiil S, Dam-Johansen K, et al. Reduction of cathodic delamination rates of anticorrosive coatings using free radical Scavengers [J]. J.Coat. Technol. Res., 2010, 7(6): 773
[9]  Huang M W, Allely C, Ogle K, et al. A mathematical model for cathodic delamination of coated metal including a kinetic pH-porosity relationship [J]. J. Electrochem. Soc., 2008, 155(5): 279
[10]  Allahar K N, Orazem M E, Ogle K. Mathematical model for cathodic delamination using a porosity-pH relationship [J]. Corros. Sci., 2007, 49(9): 3638
[11]  Reddy B, Doherty M J, Sykes J M. Breakdown of organic coatings in corrosive environments examined by scanning Kelvin probe and scanning Kelvin probe and scanning acoustic microscopy [J]. Electrochim. Acta, 2004, 49(17): 2965
[12]  Reddy B, Doherty M J. Degradation of organic coatings in a corrosive environment: a study by scanning Kelvin probe and scanning acoustic microscope [J]. Prog. Org. Coat., 2005, 52(4): 280
[13]  肖葵, 董超芳, 魏丹等. 扫描Kelvin探针研究破损环氧涂层下碳钢的腐蚀行为 [J]. 北京科技大学学报, 2011, 33(8): 972
[14]  Deflorian F, Rossi S. An EIS study of ion diffusion through organic coatings [J]. Electrochim. Acta, 2006, 51(8): 1736
[15]  Deflorian F, Rossi S. The role of ions diffusion in the cathodic delamination rate of polyester coated phosphatized steel [J]. J. Adhes. Sci. Technol., 2003, 17(2): 291
[16]  Leidheiser H R J, Wang W, et al. The mechanism for the cathodic delamination of organic coatings from a metal surface [J]. Prog. Org. Coat., 1983, 11: 19
[17]  王勇, 许立宁, 路民旭. 有机涂层中离子传输行为研究 [J]. 科学技术与工程, 2007, 7(19): 4865
[18]  Leidheiser H. Cahodic delamination of polybutadiene from steel-a review [J]. J.Adhes. Sci. Technol., 1987, 1: 79
[19]  Luo J L, Lin C J, Yang Q, et al. Cathodic disbonding of a thick polyurethane coating from steel in sodium chloride solution [J]. Prog. Org. Coat., 1997, 31(4): 289
[20]  Parks J, Leidheiser H. Ionic migration through organic coatings and consequences to corrosion [J]. Ind. Eng. Chem. Prod. Res. Dev., 1986, 25(1): 1
[21]  Jin X H, Tsay K C, Elbasir A, et al. Advances in corrosion protection by organic coatings [J]. Electrochem. Soc., 1987, 2: 37
[22]  Walter G W. The application of impedance spectroscopy to study uptake of sodium chloride solution in painted metals [J]. Corros. Sci., 1991, 32(10): 1041
[23]  Leidheiser H, Granata R D. Ion-transport through protective polymeric coatings exposed to an aqueous phase [J]. J. Res. Dev., 1988, 32(5): 582
[24]  S?rensen P A, Dam-Johansen K, Weinell C E, et al. Cathodic delamination: Quantification of ionic transport rates along coating-steel interfaces [J]. Prog. Org. Coat., 2010, 68(1): 107
[25]  Lyon S B, Philippe L, Tsuousoglou E. Direct measurements of ionic diffusion in protective organic coatings [J]. Trans. Inst. Met. Finish, 2006, 84(1): 23
[26]  Stratmann M, Feser R, Leng A. Corrosion protection by organic films [J]. Electrochim. Acta, 1994, 39(8): 1207
[27]  Holub J, Wong D T, Tan M. Analysis of CDT methods and factors affecting cathodic disbondment [A]. NACE Corrosion Conference and Expo [C]. Houston, Texas, 2007, Paper No. 07022
[28]  Steinsmo U, Skari J I. Factors influencing the rate of cathodic disbonding of coatings [J]. Corrosion, 1994, 50(12): 934
[29]  Leidheiser H, Wang W. Some substrate and environmental-influences on the cathodic delamination of organic coatings [J]. J. Coat. Technol., 1981, 53: 77
[30]  赵增元, 王佳. 有机涂层阴极剥离作用研究进展 [J]. 中国腐蚀与防护学报., 2008, 28(2): 116
[31]  Nguyen T, Hubbard J B, McFadden G B. A mathematical model for the cathodic blistering of organic coatings on steel immersed in electrolytes [J]. J. Coat. Technol., 1991, 63: 43
[32]  Chuang T J, Nguyen T, Li S. Micro-mechanic model for cathodic blister growth in painted steel [J]. J. Coat. Technol, 1999, 71: 75
[33]  Martin J W, McKnight M E, Nguyen T, et al. Continuous wet vs cyclic wet-dry salt immersion results for scribed coated steel panels [J]. J. Coat. Technol., 1989, 61: 32
[34]  Bi H C, Sykes J. Cathodic disbonding of an unpigmented epoxy coating on mild steel under semi- and full-immersion conditions [J]. Corros. Sci., 2011, 53(10): 34
[35]  Funke W. Toward a unified view of the mechanism responsible for paint defects by metallic corrosion [J]. Ind. Eng. Chem. Prod. Res. Dev., 1985, 24: 343
[36]  Martin J W, Embree E, Tsao W. Nonosmotic, defect-nontrolled cathodic disbondment of a coating from a steel substrate [J]. J. Coat. Technol., 1990, 62: 25
[37]  Alig I, Bargmann M, Oehler H, et al. Investigation of delamination mechanisms in polymer coatings by scanning acoustic microscopy [J]. J. Appl. Phys., 2011, 44(3): 1
[38]  Ritter J J, Kruger J. A qualitative ellipsometric-electrochemical approach to the study of flim growth under organic coatings [J]. Surf. Sci., 1980, 96(1): 364
[39]  Nguyen T, Hubbard J B, Pommersheim J M. Unified model for the degradation of organic coatings on steel in a neutralelectrolyte [J]. J. Coat. Technol., 1996, 45: 855
[40]  Pommersheim J M, Nguyen T, Zhang Z. Cation diffusion at the polymer coating/metal interface[J]. J. Adhes. Sci. Technol., 1995, 9(7): 935
[41]  Pommersheim J M, Nguyen T, Zhang Z, et al. Degradation of organic coatings on steel: mathematical models and predictions [J]. Prog. Org. Coat., 1994, 25(1): 23
[42]  Pommersheim J M, Nguyen T. Prediction of blisering in coating systerms [J]. Abstr. Am. Chem. Soc., 1996, 211: 25
[43]  Zhang X C, Xu B S, Wang H D, et al. Failure behavior of protective organic coatings under corrosive conditions [J]. Trans. Nonferrous. Met. Soc. China, 2004, 14: 395
[44]  Nguyen T, Martin J W. Modes and mechanisms for the degradation of fusion-bonded epoxy-coated steel in a marine concrete environment [J]. J. Coat. Technol., 2004, 1(2): 81
[45]  刘斌, 李瑛, 林海潮等. 防腐涂层失效行为研究进展 [J]. 腐蚀科学与防护技术, 2001, 13(5): 305
[46]  Miskovic-Stankovic V B, Drazic D M, Teodorovic M J. Electrolyte penetration through epoxy coatings electrodeposited on steel [J]. Corros. Sci., 1995, 37(2): 241
[47]  Karyakina M I, Kuzmak A E. Protection by organic coatings - criteria, testing methods and modeling [J]. Prog. Org. Coat., 1990, 18(4): 325
[48]  Bauer D R, Mielewski D F. The role of humidity in the photooxidation of acrylic melamine coatings [J]. Polymer Deg. Stab., 1993, 40(3): 349

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133