全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

核电焊接结构材料腐蚀失效研究现状与进展

DOI: 10.11903/1002.6495.2013.053, PP. 1-7

Keywords: 轻水堆核电站,焊接结构材料,高温高压水,环境促进开裂,设计模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

综述了轻水堆(LWR)核电站焊接结构材料环境促进开裂(EAC)的研究现状,分析了环境、材料、应力等相关影响因素,讨论了几种主要高温高压水EAC机理及考虑EAC效应的设计模型,最后指出了核电焊接结构材料EAC研究面临的问题及进一步的研究方向。

References

[1]  Nelson T W, Lippold J C, Mills M J. Nature and evolution of the fusion boundary in ferritic-austenitic dissimilar metal welds-Part 2: On-cooling transformations [J]. Weld. Res. Suppl., 2000, 79(1):267
[2]  Wu Y, Patchett B M. Formation of crack-susceptible structures of weld overlay of corrosion resistant alloys [J]. Mater. Perform.: Sulphur. Energy, 1992, 32: 83
[3]  Huang J Y, Young M C, Jeng S L, et al. Environmentally assisted cracking behavior of dissimilar metal weldments under high te-mperature water conditions [J]. Mater. Trans., 2008, 49(7): 1667
[4]  Aust K T, Erb U, Palumbo G. Interface control for resistance to intergranular cracking [J]. Mater. Sci. Eng., 1994, A176(1): 329
[5]  Raquet O, Herms E, Vaillant F, et al. SCC of cold-worked austenitic stainless steels in PWR conditions [A]. The 12th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-water Reactors [C], La Grange Park: ANS, 2005: 1049
[6]  Andresen P L, Morra M M. IGSCC of non-sensitized stainless steels in high temperature water [J]. J. Nucl. Mater., 2008, 383(1): 97
[7]  Alexandreanu B, Chopra O K, Shack W J. The stress corrosion cracking behavior of alloys 690 and 152 WELD in a PWR environment [R]. Argonne National Laboratory (ANL), 2009
[8]  McMinn A, Nelson J L. Stress corrosion cracking experience with existing and potential safe-end materials [A]. Proceedings of 3rd International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—water Reactors [C]. Traverse City, Mic-higan: NACE, 1987: 389
[9]  Jenssen A, Norrgard K, Lagerstrom J, et al. Assessment of cracking in dissimilar metal welds [A]. Proceeding of the 10th International Conference on Environmental Degradation of Materials in Nuclear Power System-water Reactors [C]. Houston: NACE, 2001: 187
[10]  Bamford W H, Hall J. Cracking of alloy 600 nozzle, weld in PWRs: review of cracking events and repair service experience [A]. Proceeding of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System-water Reactor [C]. Slat Lake City: TMS, 2005: 959
[11]  Bamford W H, Foster J, Hsu K R, et al. Alloy 182 weld crack growth, and its impact on service-induced cracking in operating PWR plant piping [A]. The 10th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-water Reactors [C]. Houston: NACE, 2001: 181
[12]  Bamford W H, Hall J. A review of alloy 600 cracking in operating nuclear plants: historical experience and future trends [A]. Proceeding of the 11th International Conference on Environmental Degradation of Materials in Nuclear Power System-water Reactor [C]. Stevenson: ANS, 2003: 1071
[13]  Park J H, Chopra O K, Natesan K, et al. Boric acid corrosion of light water reactor pressure vessel materials [A]. Proceeding of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System-water Reactor [C]. Slat Lake City: TMS, 2005: 459
[14]  Scott P M. An overview of materials degradation by stress corrosion in PWRs [J]. Eur. Federat. Corros. Public., 2007, 51: 3
[15]  Harrod D L, Gold R E, Jacko R J. Alloy optimization for PWR steam generator heat-transfer tubing [J]. JOM, 2001, 53(7): 14
[16]  侯娟, 彭群家, 庄子哲雄等. 镍基合金焊接过渡区微观结构和应力腐蚀行为研究 [J]. 金属学报, 2010, 46(11): 1258
[17]  Lee H T, Wu J L. Correlation between corrosion resistance properties and thermal cycles experienced by gas tungsten arc welding and laser beam welding alloy 690 butt weldments [J]. Corros. Sci., 2009, 51(4): 733
[18]  Lu B T, Chen Z K, Luo J L, et al. Pitting and stress corrosion cracking behavior in welded austenitic stainless steel [J]. Electrochim. Acta, 2005, 50(6): 1391
[19]  Palumbo G, King P J, Lichtenberger P C, et al. Grain boundary design and control for intergranular stress-corrosion resistance [J]. Scr. Metall. Mater., 1991, 25(8): 1775
[20]  Gertsman V Y, Tangri K, Valiev R Z. On the grain boundary statistics in metals and alloys susceptible to annealing twinning [J]. Acta Metall. Mater., 1994, 42(6): 1785
[21]  Pan Y, Adams B L, Olson T, et al. Grain-boundary structure effects on intergranular stress corrosion cracking of alloy X-750 [J]. Acta Mater., 1996, 44(12): 4685
[22]  Gertsman V Y, Bruemmer S M. Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys [J]. Acta Mater., 2001, 49(9): 1589
[23]  Andrensen P L. Crack initiation studies in alloy 690 and weld metals [R]. NRC/EPRI Meeting, 2008
[24]  Andrensen P L. Alloy 690 base metal product forms [R]. NRC/EPRI Meeting, 2008
[25]  Peng Q, Shoji T, Yamauchi H, et al. Intergranular environmentally assisted cracking of alloy 182 weld metal in simulated normal water chemistry of boiling water reactor [J]. Corros. Sci., 2007, 49(6): 2767
[26]  Yamazaki S, Lu Z, Ito Y, et al. The effect of prior deformation on stress corrosion cracking growth rates of alloy 600 materials in a simulated pressurized water reactor primary water [J]. Corros. Sci., 2008, 50(3): 835
[27]  Scott P M, Combrade P. On the mechanism of stress corrosion crack initiation and growth in alloy 600 exposed to PWR primary water [A]. Proceedings of the 11th International Conference on Environmental Degradation Materials Nuclear Power Systems [C]. Stevenson, 2003: 29
[28]  Shoji T, Lu Z P, Yamazaki S. The effect of strain-hardening on PWSCC of nickel-base alloys 600 and 690 [A]. Proceedings of the 14th International Conference on Environmental Degradation Materials Nuclear Power Systems-water Reactors [C]. Virginia Bea-ch: ANS, 2009: 23
[29]  Amzallag C, Boursier J M, Pages C, et al. Stress corrosion life assessment of 182 and 82 welds used in PWR components [A]. The 10th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-water Reactors [C]. Texas: NACE, 2001: 171
[30]  Young B A, McIlree A, King P J. Reduction of toughness results for weld metal 182 in a PWR primary water environment with varying dissolved hydrogen, lithium hydroxide and boric acid concentrations [A]. Proceedings of the 12th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-water Reactors [C]. Slat Lake City: TMS, 2005: 579
[31]  Li G F, Charles E A, Congleton J. Effect of post weld heat treatment on stress corrosion cracking of a low alloy steel to stainless steel transition weld [J]. Corros. Sci., 2001, 43(10): 1963
[32]  Peng Q J, Shoji T, Ritter S, et al. SCC behavior in the transition region of an alloy 182/SA508-2 dissimilar weld joint ender simulated BWR-NWC condition [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-water Reactors [C]. Slat Lake City: TMS, 2005: 589
[33]  Seifert H P, Ritter S, Shoji T, et al. Environmentally-assisted cracking behaviour in the transition region of an Alloy182/SA 508 Cl. 2 dissimilar metal weld joint in simulated boiling water reactor normal water chemistry environment [J]. J. Nucl. Mater., 2008, 378(2): 197
[34]  Nelson T W, Lippold J C, Mills M J. Nature and evolution of the fusion boundary in ferritic-austenitic dissimilar weld metals, Part 1-Nucleation and growth [J]. Weld. J., 1999, 78: 329
[35]  Yamazaki S, Lu Z, Ito Y, et al. The effect of prior deformation on stress corrosion cracking growth rates of Alloy 600 materials in a simulated pressurized water reactor primary water [J]. Corros. Sci., 2008, 50(3): 835
[36]  Chopra O K, Shack W J. Evaluation of effects of LWR coolant environments on fatigue life of carbon and low-alloy steels [J]. ASTM Spec. Technol. Pub., 1997, 1298: 247
[37]  Chopra O K, Shack W J. Overview of fatigue initiation in carbon and low-alloy steels in light water reactor environments [J]. J. Pressure Vessel Technol., 1999, 121(1): 49
[38]  Chopra O K, Shack W J. Low-cycle fatigue of piping and pressure vessel steels in LWR environments [J]. Nucl. Eng. Design, 1998, 184(1): 49
[39]  Kim J W, Lee K, Kim J S, et al. Local mechanical properties of Alloy 82/182 dissimilar weld joint between SA508 Gr. 1a and F316 SS at RT and 320 ℃ [J]. J. Nucl. Mater., 2009, 384(3): 212
[40]  Lu Z P, Sakaguchi K, Negishi K, et al. Quantifying the effects of strain-hardening and water chemistry on crack growth rates of 316L SS welds in high temperature water [A]. The 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-water Reactor [C]. Virginia Beach: ANS, 2009: 15
[41]  Paraventi D J, Moshier W C. The effect of cold work and dissolved hydrogen in the stress corrosion cracking of alloy 82 and alloy 182 weld metal [A]. Proceeding of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System-water Reactor [C]. Slat Lake City: TMS, 2005: 543
[42]  Hanninen H. Effects of MnS inclusion dissolution on environmentally assisted cracking in low alloy and carbon steels [J]. Corrosion, 1990, 46(7): 563
[43]  Chopra O K, Park H B. Mechanism of fatigue crack initiation in light water reactor coolant environments [R]. Argonne National Lab, 2000
[44]  Ford F P. Quantitative prediction of environmentally assisted cracking [J]. Corrosion, 1996, 52(5): 375
[45]  Vermilyea D A. A theory for the propagation of stress corrosion cracks in metals [J]. J. Electrochem. Soc., 1972, 119(4): 405
[46]  MacDonald D D, MacDonald M U. A coupled environment model for stress corrosion cracking in sensitized type 304 stainless steel in LWR environments [J]. Corros. Sci., 1991, 32(1): 51
[47]  Hanninen H, Toivonen A, Saukkonen T, et al. EAC crack initiation in nickel-based dissimilar metal welds using doped steam test [A]. Proceeding of the 14th International Conference on Environmental Degradation of Materials in Nuclear Power System [C]. Virginia Beach: ANS, 2009: 333
[48]  徐松, 吴欣强, 韩恩厚等. 核电低合金钢和不锈钢高温水腐蚀疲劳行为及环境疲劳设计模型研究 [D]. 沈阳: 中国科学院金属研究所, 2010: 47
[49]  徐松, 吴欣强, 韩恩厚等. 核电材料高温高压水腐蚀疲劳研究现状及进展 [J]. 腐蚀科学与防护技术, 2007, 19(5): 345
[50]  Chopra O K, Shack W J. Effects of LWR coolant environments onfatigue life of reactor materials [A]. NUREG/CR-6909, ANL-06/08 [C]. Washington DC: Nuclear Regulatory Commission, 2007: 7
[51]  Higuchi M, Sakaguchi K, Nomura Y, et al. Final proposal of environmental fatigue life correction factor (F) for structural materials in LWR water environment [A]. Proceedings of 2007 ASME Pressure Vessels and Piping Division Conference [C]. Texas: ASME, 2007: 7
[52]  吴欣强, 徐松, 韩恩厚等. 核级不锈钢高温水腐蚀疲劳机制及环境疲劳设计模型 [J]. 金属学报, 2011, 47(7): 790

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133