全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

电场作用下金属Zn在薄液膜下的电极过程研究

DOI: 10.11903/1002.6495.2013.167, PP. 197-204

Keywords: 直流电场,Zn,薄液膜,电极过程,大气腐蚀

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用薄液膜实验装置,采用阴极极化曲线、电化学阻抗谱研究了外加直流电场对金属Zn在薄液膜下的腐蚀行为影响。结果表明,外电场使阴极极化曲线中氧还原峰峰电位负移,峰电流增加,电极过程的荷移电阻降低;外电场作用下,使得液膜中存在电场,促进了溶解氧水合基团的传质过程,使氧的还原过程增强。同时外电场的存在使得电极/液膜界面的电荷密度增加,使电极电位负移,促进了阴极还原过程的进行。

References

[1]  陈云, 强春媚, 王国刚等. 输电铁塔的腐蚀与防护 [J]. 电力建设, 2010, 31(8): 55
[2]  周一峰, 陈清美. 电场强度对ADSS光缆的影响 [J]. 电力系统通信, 2001, (11): 16
[3]  卢铁兵, 肖刊, 张波等. 超高压输电线路铁塔附近的三维工频电场计算 [J]. 超高压技术, 2001, 27(3): 24
[4]  Chin D T, Sachdev P. Corrosion by alternating current polarization of mild steel in neutral electrolytes [J]. Corrosion, 1979, 35(8): 1714
[5]  Wendt J L, Chin D T. The a.c. corrosion of stainless steel—I. The polarization of ss304 and ss316 in acid sulfate solutions [J]. Corros. Sci., 1985, 25(10): 901
[6]  Radeka R, Zorovic D, Barisin D. Influence of frequency of alternating current on corrosion of steel in seawater [J]. Anti-Corros. Meth. Mater., 1980, 27: 13
[7]  Kim D K, Muralidharan S, Ha T H, et al. Electrochemical studies on the alternating current corrosion of mild steel under cathodic protection condition in marine environments [J]. Electrochim. Acta,2006, 51(25): 5259
[8]  Mansfeld F, Kwiatkowski L. The effects of process parameters on alternating voltage (AV) passivation of 304 stainless steel [J]. Corros. Sci., 1993, 34(12): 2045
[9]  张俊喜, 颜立成, 魏增福等. 不锈钢载波钝化膜的生长过程 [J]. 金属学报, 2004, 40(4): 404
[10]  李运超, 严川伟, 段红平等. 交变电场结合后处理技术对点蚀破坏电极的修复机理 [J]. 金属学报, 2003, 39(6): 639
[11]  Goidanich S, Lazzari L, Ormellese M. AC corrosion-Part 1: Effects on overpotentials of anodic and cathodic processes [J]. Corros. Sci., 2010, 52(2): 491
[12]  Sara G, Marco O. A theoretical study of AC-induced corrosion considering diffusion phenomena [J]. Corros. Sci., 2010, 40(2): 491
[13]  Gamal A E, Atsushi N, Tooru T. AC impedence study on corrosion of 55% Al Zn alloy coated steel under thin electrolyte layers [J].Corros. Sci., 1999, 42(7): 1509
[14]  Zhang S H, Lyon S B. Anodic processes on iron covered by thin dilute electrolyte layers anodic polarisation [J]. Corros. Sci., 1994, 36(8): 1289
[15]  Nishikata A, Ichihara Y, Tsuru T. Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer [J]. Electrochim. Acta, 1996, 41(7): 1057
[16]  Nishikat A, Ichihara Y, Tsuru T. Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer [J]. Electrochim. Acta, 1996, 41(7/8): 1057
[17]  Cheng Y L, Zhang Z, Cao F H, et al. A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers [J]. Corros. Sci., 2004, 46 (7): 1649
[18]  Wang J, Li L, Jiang J. The role of electrochemical polarization in micro-droplets formation [J]. Electrochem. Commun., 2008, 10(11):1788
[19]  Shi Y Y, Zhang Z, Su J X. Electrochemical noise study on 2024-T3 aluminum alloy corrosion in simulated acid rain under cyclic wet-dry condition [J]. Electrochim. Acta, 2006, 51(23): 4977
[20]  Qu Q, Yan C Y, Wan Y, et al. Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc [J]. Corros. Sci., 2002, 44(2): 2789
[21]  Ohtsuka T. In Situ raman spectroscopy for corrosion products of zinc in humidified atmosphere in the presence of sodium chloride precipitate [J]. Corrosion, 2003, 59(5): 407
[22]  Maldonado, Quintana R. Electrochemical gravimetric and x-ray characterization of low carbon steel corrosion rate and products at atmospheric exposure in the Caribbean area [J]. Corros. Rev., 2001, 19(5/6): 147
[23]  Aastrup T. Simultaneous infrared reflection absorption spectroscopy and QCM measurements for in situ studies of the metal/atmosphere interface [J]. J. Electrochem. Soc., 1997, 144(9): 2986
[24]  Nishikata A, Ichihara Y, Tsuru T. An application of electrochemical impedance spectroscopy to atmospheric corrosion study [J]. Corros. Sci., 1995, 37(6): 897
[25]  Zhong Q D. Study of behaviour of mild steel and copper in thin film salt solution using the wire beam electrode [J]. Corros. Sci., 2002, 44(5): 909
[26]  Cheng Y L, Zhang Z, Cao F H, et al. A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers [J]. Corros. Sci., 2004, 46(7): 1649
[27]  Zhang B, Zhou H B, Han E-H, et al. Effects of a small addition of Mn on the corrosion behaviour of Zn in a mixed solution [J]. Electrochim. Acta, 2009, 54(26): 6598
[28]  Barranco V. EIS study of the corrosion behaviour of zinc-based coatings on steel in quiescent 3%NaCl solution. Part 1: Directly exposed coatings [J]. Corros. Sci., 2004, 46(9): 2203
[29]  Paulos G D S, Alberto N C C, Oscar R M, et al. Evaluation of the corrosion behavior of galvannealed steel in chloride aqueous solution and in tropical marine environment [J]. J. Appl. Electrochem., 2005, 36(3): 375
[30]  Block H. Electrorheology [J]. J. Phys., 1988, 21(6)D: 1661
[31]  白敏菂, 白希尧, 张芝涛等. 强电场电离放电产生羟基等离子体反应过程的研究 [J]. 核聚变与等离子体物理, 2004, 24(3): 219

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133