Silva E D, Jose R M, Scotti A, et al. Power quality analysis of gas metal ARC welding process operating under different drop transfer modes[C]. Power Electronics Conference(COBEP), Brazili, 2011: 129- 135.
[2]
Mercier D, Van Overmeere Q, Santoro R, et al. In-situ optical emission spectrometry during galvanostatic aluminum anodising[J]. Electrochimica Acta, 2011, 56(3): 1329-1336.
[3]
Liu Shanzhong, Wang Yunhao. Research of CO 2 welding inverter power source under current waveform control[C]. Automation and Logistics(ICAL), 2012 IEEE Interna, 2012: 116-121.
[4]
Kelly P J, Arnell R D. Magnetron sputtering: a review of recent developments and applications[J]. Vacuum, 2000, 56(3): 159-172.
[5]
刘宝其, 段善旭, 李勋, 等. 逆变式等离子切割电源双闭环控制策略[J]. 中国电机工程学报, 2011, 31(9): 120-127. Liu Baoji, Duan Shanxu, Li Xun, et al. Double closed loop control strategy for plasma cutting inverter[J]. Proceedings of the CSEE, 2011, 31(9): 120-127.
[6]
Jia Deli, You Bo. An intelligent control strategy for plasma arc cutting technology[J]. Journal of Manufactu- ring Processes, 2011, 13(1): 1-7.
[7]
Ksrppanen M, Suntio T, Sippola M. Dynamical characterization of input voltage feedforward controlled buck converter[J]. IEEE Transactions on Industrial Electronics, 2007, 54(2): 1005-1013.
[8]
刘青, 张东来. 抑制输入扰动的Buck变换器控制方法[J]. 电工技术学报, 2011, 26(4): 93-99. Liu Qing, Zhang Donglai. An improved control method of buck converter to reject input-disturbance[J]. Transactions of China Electrotechnical Society, 2011, 26(4): 93-99.
[9]
Karppanen M, Hankaniemi M, Suntio T, et al. Dynamical characterization of peak-current-mode- controlled Buck converter with output-current feedfor- ward[J]. IEEE Transactions on Power Electronics, 2007, 22(2): 444-451.
[10]
Tummala R, Guduru R K, Mohanty P S. Nanostructured Co 3 O 4 electrodes for supercapacitor applications from plasma spray technique[J]. Journal of Power Sources, 2012, 209: 44-51.
[11]
Sarakinos K, Alami J, Konstantinidis S. High power pulsed magnetron sputtering: a review on scientific and engineering state of the art[J]. Surface and Coatings Technology, 2010, 204(11): 1661-1684.
[12]
PETROVIĆ Z L, ŠKORO N, MARIĆ D, et al. Breakdown, scaling and volt-ampere characteristics of low current micro-discharges[J]. Journal of Physics D: Applied Physics, 2008, 41(19): 194002.
[13]
Barchiche C E, Veys-Renaux D, Rocca E. A better understanding of PEO on Mg alloys by using a simple galvanostatic electrical regime in a KOH-KF-Na 3 PO 4 electrolyte[J]. Surface and Coatings Technology, 2011, 205(17-18): 4243-4424.
[14]
徐志宇, 庄玮琳, 许维胜, 等. 驱动恒流负载的DC-DC变换器的能控性[J]. 电工技术学报, 2011, 26(8): 44-49. Xu Zhiyu, Zhuang Weilin, Xu Weisheng, et al. Controllability of DC-DC converters with constant current load[J]. Transactions of China Electrotechnical Society, 2011, 26(8): 44-49.
[15]
姚川, 阮新波, 曹伟杰, 等. 双管 Buck-Boost 变换器的输入电压前馈控制策略[J]. 中国电机工程学报, 2013, 33(21): 36-44. Yao Chuan, Ruan Xinbo, Cao Weijie, et al. A input voltage feedforward control strategy for two-switch Buck-Boost DC-DC converters[J]. Proceedings of the CSEE, 2013, 33(21): 36-44.
[16]
倪靖猛, 方宇, 邢岩, 等. 基于优化负载电流前馈控制的 400Hz 三相PWM航空整流器[J]. 电工技术学报, 2011, 26(2): 141-146. Ni Jingmeng, Fang Yu, Xing Yan, et al. Three-Phase 400Hz pwm rectifier based on optimized feedforward control for aeronautical application[J]. Transactions of China Electrotechnical Society, 2011, 26(2): 141-146.
[17]
Pawlowski A, Guzmán J L, Normey-Rico J E, et al. Improving feedforward disturbance compensation capabilities in generalized predictive control[J]. Journal of Process Control, 2012, 22(3): 527-539.
[18]
Chung C H, Chen M S. A robust adaptive feedforward control in repetitive control design for linear systems [J]. Automatica, 2012, 48(1): 183-190.
[19]
Hankaniemi M, Suntio T, Sippola M. Analysis of the load interactions in constant current controlled buck converter[C]. Telecommunications Energy Conference, INTELE, 2006: 1-6.
[20]
Huo W G, Xu K, Sun B, et al. Influences of impedance matching network on pulse-modulated radio frequency atmospheric pressure glow discharges[J]. Physics of Plasmas, 2012, 19(8): 083502.