全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

代价敏感VBGP在变压器故障诊断中的应用

, PP. 222-227

Keywords: 高斯过程,误诊代价,代价敏感学习,变压器故障诊断

Full-Text   Cite this paper   Add to My Lib

Abstract:

现有变压器诊断方法默认各种误诊代价相同,以全局误诊率最低为目标,而实际问题中误诊代价通常存在差异,不同类型的误诊造成的损失往往不同。针对此提出了代价敏感变分贝叶斯高斯过程(CS-VBGP),并将其应用于变压器故障诊断。该方法将代价敏感机制引入变分贝叶斯高斯过程,以误诊代价最小为目标,按贝叶斯风险理论预测新样本的类别,克服了仅追求低误诊率并不一定会带来符合实际意义的诊断结果的问题。变压器故障诊断实例分析表明,CS-VBGP有较高的诊断正确率,趋于提高高误诊代价类别的诊断正确率,具有代价敏感性,诊断速度足以满足变压器故障诊断的工程需求。

References

[1]  朱德恒, 严璋, 谈克雄, 等. 电气设备状态监测与故障诊断技术[M]. 北京: 中国电力出版社, 2009.
[2]  吴立增, 朱永利, 苑津莎. 基于贝叶斯网络分类器的变压器综合故障诊断方法[J]. 电工技术学报, 2005, 20(4): 45-51.
[3]  Wu Lizeng, Zhu Yongli, Yuan Jinsha. Novel method for transformer faults integrated diagnosis based on Bayesian network classifie[J]. Transactions of China Electrotechnical Society, 2005, 20(4): 45-51.
[4]  章剑光, 周浩, 项灿芳. 基于Super SAB神经网络算法的主变压器故障诊断模型[J]. 电工技术学报, 2004, 19(7): 49-52, 58.
[5]  Zhang Jianguang, Zhou Hao, Xiang Canfang. Application of super SAB ANN model for transformer fault diagnosis[J]. Transactions of China Electrotech- nical Society, 2004, 19(7): 49-52, 58.
[6]  Bishop C M. Pattern Recognition and Machine Learning[M]. Singapore: Springer, 2006.
[7]  Rasmussen C E, Williams C K I. Gaussian processes for machine learning[M]. Cambridge/London: The MIT Press, 2006.
[8]  Saitta L. Machine learning: a technological roadmap [R]. The Netherlands: Univ. of Amsterdam, 2000.
[9]  Ling C X, Sheng V S. A comparative study of cost-sensitive classifiers[J]. Chinese J of Computers, 2007, 30(8): 1023-1211.
[10]  Diamantini C, Potena D. Bayes vector quantizer for classimbalance problem[J]. IEEE Trans on Knowledge and Data Engineering, 2009, 21(5): 638-651.
[11]  Girolami M, Rogers S. Variational Bayesian multino- mial probit regression with Gaussian process priors[J]. Neural Computation, 2006, 18(8): 1790- 1817.
[12]  赵文清, 朱永利, 张小奇. 应用支持向量机的变压器故障组合预测[J]. 中国电机工程学报, 2008, 28(25): 14-19.
[13]  Zhao Wenqing, Zhu Yongli, Zhang Xiaoqi. Combina- tional forecast for transformer faults based on support vector machine[J]. Proceedings of the CSEE, 2008, 28(25): 14-19.
[14]  Tang W H, Wu Q H. Condition monitoring and assessment of power transformers using computational intelligence[M]. New York: Springer-Verlag Press, 2011, 95-104.
[15]  Sheng Weifei, Xiao Binzhang. Fault diagnosis of power transformer based on support vector machine with genetic algorithm[J]. Expert Systems with Applications, 2009, 36(8): 11352-11357.
[16]  李中, 苑津莎, 张利伟. 基于自组织抗体网络的电力变压器故障诊断[J]. 电工技术学报, 2010, 25(10): 200-206.
[17]  Li Zhong, Yuan Jinsha, Zhang Liwei. Fault diagnosis for power transformer based on the self-organization antibody net[J]. Transactions of China Electrotechnical Society, 2010, 25(10): 200-206.
[18]  Seeger M. Gaussian processes for machine learning[J]. International Journal of Neural Systems, 2004, 14(2): 69-106.
[19]  Kuss M, Rasmussen C E. Assessing approximate inference for binary Gaussian process classification[J]. Journal of Machine Learning Research, 2005, 6: 1679-1704.
[20]  Nickisch H, Rasmussen C E. Approximations for binary Gaussian process classification[J]. Journal of Machine Learning Research, 2008, 9: 2035-2078.
[21]  Bermak A, Belhouari S B. Bayesian learning using gaussian process for gas identification[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(3): 787-792.
[22]  郑海平, 孙才新, 李俭, 等. 诊断电力变压器故障的一种灰色关联度分析模式及方法[J]. 中国电机工程学报, 2001, 21(10): 106-109.
[23]  Zheng Haiping, Sun Caixin, Li Jian, et al. A model and method of degree of grey incidence analysis on transformer fault diagnosis[J]. Proceedings of the CSEE, 2001, 21(10): 106-109.
[24]  孙才新, 陈伟根, 李俭, 等. 电气设备油中气体在线监测与故障诊断技术[M]. 北京: 科学出版社, 2003.
[25]  张德明. 变压器分接开关状态监测与故障诊断[M]. 北京: 中国电力出版社, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133