全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

电网故障诊断改进解析模型及其自适应生物地理学优化方法

, PP. 205-211

Keywords: 电力系统,故障诊断,改进解析模型,贡献因子,自适应生物地理学优化算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对电网故障诊断原有解析模型存在多解的问题,在详细剖析产生多解原因的基础上,根据保护和断路器的动作具有不确定性的特点,综合考虑故障发生时各类保护动作的优先权信息建立了新的改进解析模型。改进解析模型赋予不同保护和断路器不同的贡献因子,使模型更加合理,符合实际需求。此外,还给出了求解改进解析模型的自适应生物地理学优化方法,旨在实现模型的高效求解。算例仿真结果表明改进解析模型诊断结果唯一,且诊断结果合理;自适应生物地理学优化方法具有全局快速收敛的良好优化性能。

References

[1]  郭创新, 游家训, 彭明伟, 等. 基于面向元件神经网络与模糊积分融合技术的电网故障智能诊断[J]. 电工技术学报, 2010, 25(9): 183-190.
[2]  Guo Chuangxin, You Jiaxun, Peng Mingwei, et al. A fault intelligent diagnosis approach based on element-oriented artificial neural networks and fuzzy integral fusion[J]. Transactions of China Electrotechnical Society, 2010, 25(9): 183-190.
[3]  文福拴, 韩祯祥. 基于模拟进化理论的电力系统的故障诊断[J]. 电工技术学报, 1994, 9(2): 57-63.
[4]  Wen Fushuan, Han Zhenxiang. Fault section estimation in power systems using simulated evolution[J]. Transactions of China Electrotechnical Society, 1994, 9(2): 57-63.
[5]  Wen F, Han Z. Fault section estimation in power systems using a genetic algorithm[J]. Electric Power Systems Research, 1995, 34(3): 165-172.
[6]  翁汉琍, 毛鹏, 林湘宁. 一种改进的电网故障诊断优化模型[J]. 电力系统自动化, 2007, 31(7): 66-70.
[7]  Weng Hanli, Mao Peng, Lin Xiangning. An improved model for optimizing power system fault diagnosis[J]. Automation of Electric Power Systems, 2007, 31(7): 66-70.
[8]  Lin X, Ke S, Li Z, et al. A fault diagnosis method of power systems based on improved objective function and genetic algorithm-Tabu search[J]. IEEE Transac- tions on Power Delivery, 2010, 25(3): 1268-1274.
[9]  Simon D. Biogeography-based optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(6): 702-713.
[10]  Bhattacharya A, Chattopadhyay P K. Biogeography -based optimization for different economic load dispatch problems[J]. IEEE Transactions on Power Systems, 2010, 25(2): 1064-1077.
[11]  王磊, 陈青, 高湛军. 输电网故障诊断的知识表示方法及其应用[J]. 中国电机工程学报, 2012, 32(4): 85-92.
[12]  Wang Lei, Chen Qing, Gao Zhanjun. Representation and application of fault diagnosis knowledge in power transmission grids[J]. Proceedings of the CSEE, 2012, 32(4): 85-92.
[13]  Sun J, Qin S, Song Y. Fault diagnosis of electric power systems based on fuzzy Petri nets[J]. IEEE Tran- sactions on Power Systems, 2004, 19(4): 2053-2059.
[14]  Luo X, Kezunovic M. Implementing fuzzy reasoning Petri-nets for fault section estimation[J]. IEEE Tran- sactions on Power Delivery, 2008, 23(2): 676-685.
[15]  Ma H. An analysis of the equilibrium of migration models for biogeography-based optimization[J]. Information Sciences, 2010, 180(18): 3444-3464.
[16]  Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony(ABC) algorithm[J]. Journal of Global Optimization, 2007, 39(3): 459-471.
[17]  Lee C Y, Yao X. Evolutionary programming using mutations based on the Lévy probability distribution [J]. IEEE Transactions on Evolutionary Computation, 2004, 8(1): 1-13.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133