全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于电-热-机械应力多物理场的IGBT焊料层健康状态研究

, PP. 252-260

Keywords: IGBT,温度,电-热-机械力耦合,空洞,温度梯度

Full-Text   Cite this paper   Add to My Lib

Abstract:

绝缘栅双极晶体管(IGBT)模块失效将导致功率变流器故障,而IGBT主要失效模式之一——焊料层疲劳则主要是由于温度分布不均匀和材料参数不匹配引起的热应力造成。因此研究IGBT模块温度-机械应力分布特性,对变流器安全评估尤其重要。基于所建立的IGBT功率模块电-热-机械应力多物理场模型,分析了IGBT模块稳态以及瞬态下的热-机械应力分布特性规律。基于论文提出的模型,针对IGBT焊料层疲劳失效,分析了焊料层空洞位置以及大小对功率模块热-机械应力的影响规律,结果表明焊料层热应力最大值出现在焊料层边角以及空洞边缘处,相同面积下拐角空洞更容易导致IGBT模块失效,而且芯片结温随着中心空洞半径增加而升高,当空洞率达到50%时,结温温升达到5.10℃,严重时将会导致模块失效。基于能量微分以及热应力理论,本文提出了基于温度梯度评估焊料层运行状况的方法,并从理论以及仿真模拟层面,验证了该方法的准确性,并分析了不同焊料层失效程度对温度梯度的影响规律,发现温度梯度变化规律与结温变化规律一致,且灵敏度高,具有可追踪故障点位置的优点。

References

[1]  Wei Lixiang, Kerkman Russ J, Lukaszewski Richard A. Analysis of IGBT power cycling capabilities used in doubly fed induction generator wind power system[C]. Energy Conversion Congress and Exposition (ECCE), 2010 IEEE Atlanta, GA, 2010: 3076-3083.
[2]  Anzawa Takashi, Yu Qiang. Reliability evaluation on deterioration of power device using coupled electrical thermal-mechanical analysis[J]. Journal of Electronic Packaging, 2008, 132(1): 319-324.
[3]  Takahashi Tomohiro, Qiang Yu. Precision evaluation for thermal fatigue life of power module using coupled electrical-thermal-mechanical analysis[C]. Electronics Packaging Technology Conference, Singapore, 2010: 201-205.
[4]  Sasaki Koji, Iwasa Naoko. Thermal and structural simulation techniques for estimating fatigue life of an IGBT module[C]. Proceedings of 20th Internation Symposium on Power Semiconductor Devices&IC’s, Oralando, 2008: 181-184.
[5]  Ye Hua, Lin Minghui, Basaran Cemal. Failure modes and FEM analysis of power electronic packaging[J]. Finite Elements in Analysis and Design, 2002, 38(7): 601-612.
[6]  Chen Yan, Wu Xin, Fedchenia Igor. A comprehensive analytical and experimental investigation of wire bond life for IGBT modules[C]. Applied Power Elec- tronics Conference and Exposition(APEC), Twenty- Seventh Annual Orlando, 2012: 2298-2304.
[7]  郑利兵, 韩立, 刘钧. 基于三维热电耦合有限元模型的IGBT失效形式温度特性研究[J]. 电工技术学报, 2011, 26(7): 242-246. Zheng Libing, Han Li, Liu Jun. Investigation of the temperature character of IGBT failure mode based on 3D thermal-electro coupling FEM[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 242-246.
[8]  Bouarroudj M, Khatir Z, Lefebvre S. Temperature levels effects on the thermo-mechanical behavior of solder attach during thermal cycling of power elec- tronic modules[C]. Power Electronics Specialists Conference, Rhodes, 2008: 2435-2440.
[9]  谢鑫鹏, 毕向东, 胡俊. 空洞对功率芯片粘贴焊层热可靠性影响的分析[J]. 半导体技术, 2009, 34(10): 960-964, 1031. XieXinpeng, Bi Xiangdong, Hu Jun. Effects of voids on thermal reliability in power chip die attachment solder layer[J]. Semiconductor Technology, 2009: 34(10): 960-964, 1031.
[10]  徐盛友. 功率变流器状态监测及可靠性评估方法研究[D]. 重庆: 重庆大学, 2013.
[11]  Xiang Dawei, Ran Li. Monitoring solder fatigue in a power module using case-above-ambient temperature rise[J]. IEEE Transactions on Industry Applications, 2011, 47(6): 2578-2590.
[12]  Shinohara Kazunori, Yu Qiang. Fatigue evaluation of power devices[C]. International Conference on Elec-tronic Packaging Technology & High Density Packaging, Beijing, 2009: 1277-1283.
[13]  Hung T Y, Chiang SY, Huang C J. Thermal- mechanical behavior of the bonding wire for a power module subjected to the power cycling test[J]. Microelectronics Reliability, 2011, 51(9-11): 1819- 1823.
[14]  陶文铨. 传热学[M]. 西安: 西安交通大学出版社, 2001.
[15]  孔祥谦. 有限单元法在传热学中的应用[M]. 北京: 科学出版社, 1998.
[16]  金建铭, 电磁场有限单元方法[M], 西安: 西安电子科技大学出版社, 1998.
[17]  Libing Zheng Li Han. Investigation of the Tem- perature character of IGBT solder delamination based the 3-D thermal-electro coupling FEM[C]. Asia-Pacific Power and Energy Engineering Conference(APPEEC), IEEE Power&Energy Society(PES), Chengdu, 2010: 1-4.
[18]  罗文功. BGA封装的热应力分析及其热可靠性研究[D]. 西安: 西安电子科技大学, 2009.
[19]  万志敏. 多物理场耦合方法分析三种封装模块可靠性[D]. 武汉: 华中科技大学, 2011.
[20]  余小玲. 电力电子集成模块及新型翅柱复合型散热器的传热性能研究[D]. 西安: 西安交通大学, 2005.
[21]  陈明, 胡安. 绝缘栅双极型晶体管动态电热联合仿真模型[J]. 电力自动化设备2012, 32(4): 31-34. Chen Ming, Hu An. Dynamic electro-thermal simulation model of IGBT[J]. Electric Power Automation Equipment, 2012, 32(4): 31-34.
[22]  M Bouarroudj, Z Khatir S. Comparison of stress distri- butions and failure modes during thermal cycling and power cycling on high power IGBT modules[C]. Power Electronics and Applications, 2007:1-10
[23]  Nishad Patil, Dignanta Das, Kai Goebel, et al. Identification of failure precursor parameters for insulated gate bipolar transistors (IGBTs)[C]. Inter- national Conference on Prognostics and Health Management, 2008: 1-5.
[24]  周雒维, 周生奇, 孙鹏菊. 基于杂散参数辨识的IGBT模块内部缺陷诊断方法[J]. 电工技术学报, 2012, 27(5): 156-163. Zhou Luowei, Zhou Shengqi, Sun Pengju. Diagnostic method for internal defects of IGBTs base on stray parameter identification[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 156-163.
[25]  W L Anderson, 彭翔. 利用超声波和温度梯度测量金属内部应力的新方法[J]. 天津大学学报, 1988, 2(4): 54-60.
[26]  W L Anderson, Peng Xiang. A new method of stress detection in metals by ultrasound and temperature gradient[J]. Journal of Tianjin University,1988, 2(4): 54-60.
[27]  俞刘建. 温度梯度梁、板单元的热模态分析[D]. 南京: 南京航空航天大学, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133