全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

电力系统的多重(维)鞍结分岔点及其特征分析

, PP. 145-150

Keywords: 平衡解曲线,支路电流,鞍结分岔点,重(维)数,雅可比矩阵特征值

Full-Text   Cite this paper   Add to My Lib

Abstract:

电力系统平衡解曲线的显式表达对鞍结分岔点性态的研究至关重要。本文通过引入支路电流变量,将节点电压方程表示成一元二次的形式,得到以支路电流为参数的电力系统平衡解曲线显式表达式,进一步对鞍结分岔进行节点特征描述,通过定义鞍结分岔点的重数(维数)和雅可比矩阵的特征值分析,说明鞍结分岔点的重(维)数与雅可比矩阵特征值为零的对数是相同的,多重(维)鞍结分岔点代表系统更临近的稳定边界,并提出多重(维)鞍结分岔点的降维求解算法。仿真计算表明,本文所提出的方法是正确的。

References

[1]  杨黎晖, 马西奎. 基于分岔理论的含双馈风电机组的电力系统电压稳定性分析[J]. 电工技术学报, 2012, 27(9): 1-8. Yang Lihui, Ma Xikui. Analysis on voltage stability of power system with doubly fed induction generator wind turbine based on bifurcation theory[J]. Transac- tions of China Electrotechnical Society, 2012, 27(9): 1-8.
[2]  Li Hongzhong, Cheng Haozhong, Zhu Zhenhua, et al. Review on application of bifurcation theory in power system voltage stability[J]. Relay, 2006, 34(2): 69-73.
[3]  杨秀, 金红核, 郭晨吉, 等. 应用分岔理论分析SVC 对电力系统电压稳定性的影响[J]. 电力系统保护与控制, 2009, 37(7): 7-10. Yang Xiu, Jin Honghe, Guo Chenji, et al. The influence of SVC on voltage stability of power system based on bifurcation theory[J]. Power System Protection and Control, 2009, 37(7): 7-10.
[4]  赵兴勇, 张秀彬, 苏小林. 电力系统电压稳定性研究与分岔理论[J]. 电工技术学报, 2008, 23(2): 87-95. Zhao Xingyong, Zhang Xiubin, Su Xiaolin. Voltage stability studies and bifurcation theory in power systems[J]. Transactions of China Electrotechnical Society, 2008, 23(2): 87-95.
[5]  叶康生, 陆天天, 袁驷. 结构几何非线性分析中分叉失稳的直接求解[J]. 工程力学, 2011, 28(8): 1-8. Ye Kangsheng, Lu Tiantian, Yuan Si. Structure geometry nonlinear analysis of bifurcation buckling direct solution[J]. Engineering Mechanics, 2011, 28(8): 1-8.
[6]  马兆兴, 万秋兰, 李洪美. 考虑极限诱导分岔的电压稳定研究[J]. 电力系统保护与控制, 2011, 39(20): 24-30. Ma Zhaoxing, Wan Qiulan, Li Hongmei. Research on voltage stability analysis of limit induced bifurcation [J]. Power System Protection and Control, 2011, 39(20): 24-30.
[7]  胡泽春, 王锡凡. 基于最优乘子潮流确定静态电压稳定临界点[J]. 电力系统自动化, 2006, 30(6): 6-11. Hu Zechun, Wang Xifan. Determination of static voltage collapse critical point based on load flow method with optimal multiplier[J]. Automation of Electric Power System, 2006, 30(6): 6-11.
[8]  Dong Xiaoming, Liang Jun, Zhang Xueqing, et al. Computation of closest steady state voltage stability bifurcation using PSO approach[C]. 2012 IEEE Inno- vative Smart Grid Technologies-Asia (ISGT Asia), 2012: 1-4.
[9]  Feng Z, Ajjarapu V, Long B Z. Identification of voltage collapse through direct equilibrium tracing[J]. IEEE Transactions on Power Systems, 2000, 15(1): 342-349.
[10]  王刚, 张雪敏, 梅生伟. 基于近似连续潮流的在线电压稳定分析[J]. 电力系统自动化, 2008, 32(11): 6-11. Wang Gang, Zhang Xuemin, Mei Shengwei. On-line voltage stability analysis based on approximate con- tinuation power flows[J]. Automation of Electric Power System, 2008, 32(11): 6-11.
[11]  江伟, 王成山, 余贻鑫, 等. 直接计算静态电压稳定临界点的新方法[J]. 中国电机工程学报, 2006, 26(10): 1-5. Jiang Wei, Wang Chengshan, Yu Yixin, et al. A new method for direct calculating the critical point of static voltage stability[J]. Proceedings of the CSEE, 2006, 26(10): 1-5.
[12]  刘永强, 严正, 倪以信, 等. 基于辅助变量的潮流方程二次转折分岔点的直接算法[J]. 中国电机工程学报, 2003, 23(5): 9-13. Liu Yongqiang, Yan Zheng, Ni Yixin, et al. An auxiliary-variable-based direct method for computing quadratic turning bifurcation points of power flow equations[J]. Proceedings of the CSEE, 2003, 23(5): 9-13.
[13]  杨小煜, 周孝信. 基于极小扩张系统方法的静态电压稳定临界点计算[J]. 中国电机工程学报, 2009, 29(25): 32-36. Yang Xiaoyu, Zhou Xiaoxin. Calculation of the critical points of static voltage stability with minimally extended system method[J]. Proceedings of the CSEE, 2009, 29(25): 32-36.
[14]  郭瑞鹏, 韩祯祥, 王勤. 电压崩溃临界点的非线性规划模型及算法[J]. 中国电机工程学报, 1999, 19(4): 14-17. Guo Ruipeng, Han Zhenxiang, Wang Qin. Nonlinear programming model & algorithm for point of collapse [J]. Proceedings of the CSEE, 1999, 19(4): 14-17.
[15]  韦化, 丁晓莺. 基于现代内点理论的电压稳定临界点算法[J]. 中国电机工程学报, 2002, 22(3): 27-31. Wei Hua, Ding Xiaoying. An algorithm for determining voltage stability critical point based on interior point theory[J]. Proceedings of the CSEE, 2002, 22(3): 27-31.
[16]  Irisarri G D, Wang X, Tong J, et al. Maximum load ability of power systems using interior point non- linear optimization method[J]. IEEE Transactions on Power Systems, 1997, 12(1): 162-172.
[17]  蒋平, 顾伟, 严伟佳, 等. 基于多参数分岔分析方法的多机系统动态负荷裕度研究[J]. 电工技术学报, 2007, 22(3): 107-114. Jiang Ping, Gu Wei, Yan Weijia, et al. Research on dynamic load margin of multi-machine power systems based on multi-parameter bifurcation analysis[J]. Transactions of China Electrotechnical Society, 2007, 22(3): 107-114.
[18]  赵晋泉. 一种实用的二维参数静态稳定边界追踪方法[J]. 电力系统保护与控制, 2011, 39(11): 17-22. Zhao Jinquan. A practical two-parameter steady stability boundary tracing method[J]. Power System Protection and Control, 2011, 39(11): 17-22.
[19]  陆启韶. 分岔与奇异性[M]. 上海: 上海科技教育出版社, 1995.
[20]  蔡大用, 白峰杉. 高等数值分析[M]. 北京: 清华大学出版社, 2011.
[21]  武际可, 周鹏. 非线性问题和分叉问题及其数值方法[J]. 力学与实践, 1994, 16(1): 1-8. Wu Jike, Zhou Peng. Nonlinear problems and bifurca- tion problems and numerical methods[J]. Mechanics and Practice, 1994, 16(1): 1-8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133