全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多群组均衡协同搜索的多目标优化发电调度

, PP. 181-189

Keywords: 多目标发电调度,分级均衡聚类,协同进化优化,最优均衡解,帕累托最优

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对多目标、强约束及大规模电力系统发电优化调度问题,提出一种新型多群组均衡协同搜索算法(EMGSS)。该算法基于随机学习自动机的协同进化搜索以实现合作搜索群组之间的适应度分配和策略交互。此外,EMGSS提出一种分级均衡聚类方法为系统调度员提供一系列多样化的帕累托最优均衡前沿,并引入纳什均衡来抽取最终多目标解集的最优决策解。仿真算例采用标准IEEE30节点及118节点系统,性能对比与仿真测试验证了所提算法在解决高维多目标节能减排发电调度问题中的优越性。

References

[1]  郑晓, 张静, 马韬韬, 等. 基于改进决策方法的电力系统多目标优化调度[J]. 电工技术学报, 2010, 25(9): 151-156. Zheng Xiao, Zhang Jing, Ma Taotao, et al. Power system multi-objective optimization dispatch based on an improved decision-making method[J]. Transactions of China Electrotechnical Society, 2010, 25(9): 151- 156.
[2]  Das D B, Patvardhan C. New multi-objective stochastic search technique for economic load dispatch[J]. IEE Proceedings Generation, Transmission & Distribution, 1998, 145(6): 747-752.
[3]  Abido M A. Multiobjective evolutionary algorithms for electric power dispatch problem[J]. IEEE Transac- tions on Evolutionary Computation, 2006, 10(3): 315-329.
[4]  郑金华. 多目标进化算法及其应用[M]. 北京: 科学出版社, 2007.
[5]  Abido M A. Environmental/economic power dispatch using multi-objective evolutionary algorithms[J]. IEEE Transactions on Power Systems, 2003, 18(4): 1529- 1537.
[6]  Agrawal S, Panigrahi B K, Tiwari M K. Multiob- jective particle swarm algorithm with fuzzy clustering for electrical power dispatch[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(5): 529-541.
[7]  彭春华, 孙惠娟. 基于非劣排序微分进化的多目标优化发电调度[J]. 中国电机工程学报, 2009, 29(34): 71-76. Peng Chunhua, Sun Huijuan. Multi-objective optimiza- tion power dispatch based on non-dominated sorting differential evolution[J]. Proceedings of the CSEE, 2009, 29(34): 71-76.
[8]  He S, Wu Q H, Saunders J R. Group search optimizer: an optimization algorithm inspired by animal searching behavior[J]. IEEE Transactions on Evolutionary Com- putation, 2009, 13(5): 973-990.
[9]  Zhou B, Chan K W, Yu T, et al. Equilibrium-inspired multiple group search optimization with synergistic learning for multiobjective electric power dispatch[J]. IEEE Transactions on Power Systems, 2013, 28(4): 3534-3545.
[10]  Poznyak A S, Najim K. Learning automata and stochastic optimization[M]. New York: Springer- Verlag, 1997.
[11]  余涛, 周斌, 陈家荣. 基于多步回溯 Q ( λ )学习的互联电网随机最优CPS控制[J]. 电工技术学报, 2011, 26(6): 179-186. Yu Tao, Zhou Bin, Chen Jiarong. Stochastic optimal CPS control for interconnected power grids using multi-step backtrack Q ( λ ) learning[J]. Transactions of China Electrotechnical Society, 2011, 26(6): 179-186.
[12]  Park J, Lee K, Shin J, et al. A particle swarm optimization for economic dispatch with nonsmooth cost functions[J]. IEEE Transactions on Power Systems, 2005, 20(1): 34-42.
[13]  Caponetto R, Fortuna L, Fazzino S, et al. Chaotic sequences to improve the performance of evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(3): 289-304.
[14]  谢政. 对策论导论[M]. 北京: 科学出版社, 2010.
[15]  Lee F N, Breipohl A M. Reserve constrained economic dispatch with prohibited operating zones[J]. IEEE Transactions on Power Systems, 1993, 8(1): 246-254.
[16]  张汝波. 强化学习理论及应用[M]. 哈尔滨: 哈尔滨工程大学出版社, 2001.
[17]  Nocedal J, Wright S J. Numerical Optimization[M]. New York: Springer, 2006.
[18]  Zimmerman R, Gan D. Matpower: a MATLAB power system simulation package[OL]. Available: http:// www.pserc.cornell.edu/matpower.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133