全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高效填谷式电池放电变换器及并联控制方法

, PP. 15-22

Keywords: 电池放电变换器,填谷式移相全桥,跨导控制,模块并联,均流

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过仿真分析比较了3种升压拓扑的优缺点,选择了填谷式移相全桥拓扑结构,并提出了一种跨导型双环控制的变换器,实现了电池放电变换器(BDR)模块的并联功率输出,设计了均流精度补偿器,提高了并联模块间的均流精度,并由外部电压环保证母线具有良好的动态响应。给出了1500WBDR模块的设计实例,实验结果表明输出均流精度误差在1%以内,10%载效率为95%,半载效率为98.5%,满载效率大于97%,该并联控制方案及均流精度补偿器具有良好的动静态性能,为大功率的BDR功率扩展提供了有效的技术手段。

References

[1]  Sun Juanjuan. Dynamic performance analyses of current sharing control for DC-DC converters[D]. Virginia Tech, 2007.
[2]  Panov Y, Jovanovic M M. Stability and dynamic performance of current-sharing control for paralleled voltage regulator modules[J]. IEEE Transaction on Power Electronics, 2002, 2 (17): 172~179.
[3]  Weinberg A K, Boldo P R. A high power, high frequency, DC-DC converter for space applications[C]. IEEE PESC, 1992:1140-1147.
[4]  Denzinger W, Dietrich W. Generic 100V high power bus conditioning[C]. Seventh European Space Power Conference, 2005, 5: 9-13.
[5]  Sudhakar B C. Veerachary M. Predictive valley current control for two inductor boost converter[C].Proceddings of the IEEE International Symposium on Industrial Electronics, 2005: 727-731.
[6]  ejea J B, Ferreres A, et al. High efficiency battery discharge regulator with parallel power processing[C]. Proceedings of the IEEE Applied Power Electronics Conference, 2005: 204-209.
[7]  Ejea J B, Ferreres A, Sanchis K E, et al. Optimized topology for high efficiency battery discharge regulator[J]. IEEE Transaction on Aerospace and Electronic System, 2008, 44(4): 1511~1518.
[8]  MartíJ B W, Kilders E S, Maset E, et al. Stability problems of peak current control at narrow duty cycles[C]. APEC, 2008:1549-1554.
[9]  Marti J B E, Sanchis E, Maset K, et al. Peak current control instabilities at narrow duty cycles[C]. IEEE PESC, 2008:476-482.
[10]  Maset E, Ferreres A, Ejea J B, et al. 5kW weinberg converter for battery discharging in high-power communications satellites[C]. IEEE PESC, 2005: 69-75.
[11]  Sammaljrvi T, Lakhdari F, Karppanen M, et al. Modelling and dynamic characterisation of peak-current-mode-controlled superboost converter[J]. The Institution of Engineering and Technology, 2008, 1(4): 527-536.
[12]  Laszlo Balogh. The current-doubler rectifier: an alternative rectification technique for push-pull and bridge converters[R]. Texas Instruments Application Note SLUA121.
[13]  Steve Mappus. Current doubler rectifier offers ripple current cancellation[R]. SLUA323, 2004, 9: Texas Instrument.
[14]  Techniques to improve ZVS full-bridge performance. Intersil Corporation Application Note[R]. 2006(4)4: N1246.
[15]  Ridley R B. An accurate and practical small-signal model for current-mode control[J]. Ridley Engineering, 1999.
[16]  Kutkut N H, Divan D M. An improved full-bridge zero-voltage switching PWM converter using a two- Inductor rectifier[J]. IEEE Transsation Industrial Applicat, 1995, 31(1): 119-126.
[17]  Kutkut N H, Luckjiff G. Current mode control of a full bridge DC-TO-DC converter with a two inductor rectifier[C]. IEEE PESC, 1997: 203-209.
[18]  Wei Tang, Fred C L, Raymond B, et al. Small- signal modeling of average current-mode control[J]. IEEE Transactions on power Electronics, 1993, 8(2): 112-118.
[19]  Vlatko Vlatkovic, Sabate J A, Ridley R B, et al. Small-signal analysis of the phase-shift PWM converter[J]. IEEE Transaction on Power Electronics. 1992, 7(1): 128-135.
[20]  Hung G K, Chen C L. A simple current-share paralleling technique for peak-current-mode controlled power supplies[C]. IEEE international conference on power electronics and drive systems, 2001, 2(22) : 504- 507.
[21]  Sullivan D O, Spruyt H, Crausaz A. PWM conductance control[C]. IEEE Power Electronics. Specialists’ Con5 Rec, 1988: 351-359.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133