全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

铁氧体环形电感器寄生电容的提取

, PP. 22-29

Keywords: 电感器,有限元法,寄生电容,谐振频率

Full-Text   Cite this paper   Add to My Lib

Abstract:

铁氧体电感器在较高频率时可等效为“电阻、电感”的串联支路与一寄生电容的并联,该电容的存在对电感器的高频性能有重要影响。建立铁氧体环形电感器2D平行平面场和3D静电场有限元模型,分别计算任意两线匝之间的杂散电容,由此得到其等效电容网络。若在电感器输入和输出线匝间加一单位电流,基于节点电压方程,则可求解得到电感器的容性集中参数——寄生电容。在假定该寄生电容与频率无关时,利用测试电感器的谐振频率,可得到该寄生电容。计算与实验对比显示,电感器的边缘效应在静电场的模型建立中占据非常重要的地位,即包括线匝杂散电容计算在内的静电场分析必须以3D模型进行。若仅考虑相邻3匝间的杂散电容,则电感器等效寄生电容值可达考虑所有线匝间杂散电容时寄生电容的95%以上,寄生电容与铁氧体磁心和导线绝缘材料的介电常数呈线性关系,且绝缘材料的介电常数对寄生电容的影响更大。

References

[1]  张世远, 路权, 薛荣华, 等. 磁性材料基础[M]. 北京:科学出版社, 1988.
[2]  Philip Fosu Okyere, Ernst Habiger. A novel physically-based PSPICE compatible model for CM chokes[C]. IEEE Proceedings of International Symposium on Electromagnetic Compatibility, 1999 (18P201): 33-36.
[3]  陈恒林, 陈玮, 冯利民, 等. 基于阻抗测量的共模扼流圈高频建模[J]. 电工技术学报, 2007, 22(4): 8-12.
[4]  邱扬, 鬲莉, 田锦, 等. 电感器磁心材料特性的参数分析[J]. 安全与电磁兼容, 2002(6): 32-34.
[5]  Gabriele Grandi, Marian K Kazimierczuk, Antonio Massarini, et al. Stray capacitances of single-layer solenoid air-core inductors[J]. IEEE Trans. on Industry Application, 1999, 35(5): 1162-1168.
[6]  Lu H Y, Zhu J G, Ramsden V S, et al. Measurement and modeling of stray capacitance in high frequency transformer[C]. Proc. of IEEE PESC’99, 1999: 763-768.
[7]  盛剑霓. 工程电磁场数值分析[M]. 西安:西安交通大学出版社, 1991.
[8]  Reggiani U, Grandi G, Sancineto G, et al. High-frequency behavior of laminated iron-core inductors for filtering applications[C]. APEC 2000, 15th Annual IEEE Applied Power Electronics Conference and Exposition, 2000(V2): 654-660.
[9]  Qin Yu, Thomas W Holmens. A study on stray capacitance modeling of inductors by using the finite element method[J]. IEEE Trans. on Electromagnetic Capability, 2001, 43(1): 88-93.
[10]  Prieto R, Cobos J A, Garcfa O, et al. Taking into account all the parasitic effects in the design of magnetic components[C]. IEEE APEC, 1998: 400-406.
[11]  凌跃胜, 赵争菡, 李奇男, 等. 高频变压器动态电容的数值计算[J]. 华北电力大学学报, 2005, 32(增刊): 87-90.
[12]  赵志英. 小型化航空静止变换器的研究[D]. 南京:南京航空航天大学, 2007.
[13]  冯慈璋, 马西奎. 工程电磁场导论[M]. 北京:高等教育出版社, 2000.
[14]  Wang Shuo, Lee Fred, Odendaal W G. Single layer iron powder core inductor model and its effect on boost PFC EMI noise[C]. 2003 IEEE 34th Annual Power Electronics Specialists Conference, 2003, 2(pt2): 847-852.
[15]  Marian K Kazimieczuk, Giuseppe Sancineto, Gabriele Grandi, et al. High-frequency small-signal model of ferrite core inductors[J]. IEEE Trans. on Magnetics, 1999, 35(5): 4185-4191.
[16]  陈荣杰, 蒋全兴. 直流偏磁下铁氧体磁性材料特性测试方法的研究[J]. 电子质量, 2007(3): 6-7.
[17]  陈穷, 蒋全兴. 电磁兼容工程设计手册[M]. 北京:国防工业出版社, 1993.
[18]  Grandi G, Kazimierczk M K, Massarini A, et al. Stray capacitance of single-layer air-core inductors for high-frequency application[C]. Proc. of IEEE Industry Application, 1996, 3: 1384-1388.
[19]  袁义生. 电感器分布电容的建模[J]. 华东交通大学学报, 2006, 23(5): 90-93, 101.
[20]  Antonio Massarini, Marian K Kazimierczuk. Self-capacitance of inductors[J]. IEEE Trans. on Power Electronics, 1997, 12(4): 671-676.
[21]  Bartoli M, Reatti A, Kazimierczuk M K. Modeling iron-power inductors at high frequencys[C]. Conference Record of the 1994 Industry Applications Conference, 29 IAS Anuual Meeting, 1994: 1225-1232.
[22]  Gabriele Grandi, Marian K Kazimieczuk, Antonio Massarini, et al. Model of laminated iron-core inductors for high frequencies[J]. IEEE Trans. on Mag., 2004, 40(4): 1839-1845.
[23]  Bartoli M, Reatti A, Kazimierczuk M K. High-frequency models of ferrite core inductors[C]. IECON1994 20th International Conference on Industrial Electronic Control and Instrumentation, 1994, 3(pt3): 1670-1675.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133