全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于三角自卷积窗的介损角测量算法及应用

, PP. 192-198

Keywords: 介损角,三角自卷积窗,快速傅里叶变换,相位差,频谱分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

非同步采样条件下采用快速傅里叶变换(FFT)进行介损角测量时,频谱泄漏和栅栏效应造成的误差较大。本文提出了一种基于三角自卷积窗频谱相位差校正的介损角测量算法,介绍了其在高压电容型设备绝缘在线监测系统中的应用。三角自卷积窗具有良好的旁瓣性能,采用三角自卷积窗对信号进行加权能有效减少频谱泄漏对介损角测量的影响;基于三角自卷积窗的频谱校正算法不需求解高次方程,计算量小。在非同步采样情况下,通过对基波频率波动、采样频率变化、介损角真值变化、白噪声影响、谐波变化等情况下的介损角仿真测量实验和实际应用验证了本文算法的准确性和有效性。

References

[1]  Yu X, Yi B, Liu F, et al. Prediction of the dielectric dissipation factor tan δ of polymers with an ANN model based on the DFT calculation[J]. Reactive and Functional Polymers, 2008, 68(11): 1557-1562.
[2]  赵秀山, 谈克雄, 朱德恒, 等. 介质损耗角的数字化测量[J]. 清华大学学报(自然科学版), 1996, 36(9): 51-56.
[3]  尚勇, 杨敏中, 王晓蓉, 等. 谐波分析法介质损耗因数测量的误差分析[J]. 电工技术学报, 2002, 17(3): 67-71.
[4]  徐志钮, 律方成, 李和明. 加Blackman-Harris窗插值算法仿真介损角测量[J]. 高电压技术, 2007, 33(3): 104-108.
[5]  Agrez D. Interpolation in the frequency domain to improve phase measurement[J]. Measurement, 2008, 41(2): 151-159.
[6]  丁康, 朱小勇. 适用于加各种窗的一种离散频谱相位差校正法[J]. 电子学报, 2001, 29(7): 987-989.
[7]  Krupka J, Breeze J, Centeno A, et al. Measurements of permittivity, dielectric loss tangent, and resistivity of float-zone silicon at microwave frequencies[J]. IEEE Trans. on Microwave Theory and Techniques, 2006, 54(11): 3995-4001.
[8]  Levi R, Manifase S, Co D E, et al. Further studies of anomalous phenomena in dielectric-loss measurements transformer bushings model[J]. IEEE Trans. on Power Delivery, 1995, 10(2): 889-895.
[9]  Geyer R G, Kabos P, et al. Dielectric sleeve resonator techniques for microwave complex permittivity evaluation[J]. IEEE Trans. on Instrumentation and Measurement, 2002, 51(2): 383-392.
[10]  Dankov P I. Two-resonator method for measurement of dielectric anisotropy in multilayer samples[J]. IEEE Trans. on Microwave Theory and Techniques, 2006, 54(4): 1534-1544.
[11]  Nuttall A H. Some windows with very good sidelobe behavior[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1981, 29(1): 84-91.
[12]  David M M, Alireza K Z, Thomas H O. A new technique of measurement of nonstationary harmonics[J]. IEEE Trans. on Power Delivery, 2007, 22(1): 387-395.
[13]  Lee S, Yang J, Younsi K, et al. An online ground wall and phase-to-phase insulation quality assessment technique for AC-machine stator windings[J]. IEEE Transactions on Industry Applications, 2006, 42(4): 946-957.
[14]  柴旭峥, 关根志, 文习山, 等. tan δ 高准确度测量的加权插值FFT算法[J]. 高电压技术, 2003, 29(2): 32-33.
[15]  杨晓东, 唐超. 改进的数字化测量方法在介损测量中的应用[J]. 重庆工学院学报(自然科学版), 2007, 21(5): 47-50.
[16]  王微乐, 李福祺, 谈克雄. 测量介质损耗角的高阶正弦拟合算法[J]. 清华大学学报(自然科学版), 2001, 41(9): 5-8.
[17]  Qian H, Zhao R X, Chen T. Interharmonics analysis based on interpolating windowed FFT algorithm[J]. IEEE Trans. on Power Delivery, 2007, 22(2): 1064-1069.
[18]  张介秋, 梁昌洪, 韩峰岩, 等. 介质损耗因数的卷积窗加权算法[J]. 电工技术学报, 2005, 20(3): 100-104.
[19]  Chen K F, Li Y F. Combining the Hanning windowed interpolated FFT in both directions[J]. Computer Physics Communications, 2008, 178(12): 924-928.
[20]  滕召胜, 温和, 等. 三角自卷积窗加权算法: 中国, 200810031065.7[P]. 2008.
[21]  Belega D, Dallet D. Frequency estimation via weighted multipoint interpolated DFT[J]. Science, Measurement & Technology, IET, 2008, 2(1): 1-8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133