全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于可靠性加权拓扑模型下的电网脆弱性评估模型

, PP. 131-137

Keywords: 参数脆弱性,可靠性,结构脆弱性,复杂网络理论,小世界理论,脆弱性评估模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

在考虑元件可靠性参数的同时,结合复杂网络理论的结构分析,对电网的脆弱强度进行评估。提出了基于元件可靠性参数的加权电网拓扑模型;给出了加权后相应复杂网络参数的定义与计算方法及考虑经济性的结构脆弱后评估新指标;由此,提出了结合参数脆弱性与结构脆弱性的电网脆弱性评估模型。算例结果表明所提模型有效克服了考察角度单一的弊端,在保持了复杂网络理论对结构脆弱性有较好辨识能力的基础上,对电网薄弱环节进行准确定位,提高了脆弱辨识精度,可为电网安全运行维护及改造提供参考,验证了模型的合理性及有效性。

References

[1]  Demarco C L, Qverbye T J. An energy based securtity measure for assessing vulnerability to voltage collapse[J]. IEEE Transactions on Power Systems, 1990, 5(2): 419-427.
[2]  刘群英, 刘俊勇, 刘起方. 运用启发式能量函数观点的无功裕度估算[J]. 中国电机工程学报, 2008, 28(4): 29-36.
[3]  Ubeda J R, Allan R N. Sequential simulation applied to composite system reliability evaluation[J]. IEEE Transactions on Power System, 1994, 9(1): 81-86.
[4]  Yu Xingbin, Singh C. A practical approach for integrated power system vulnerability analysis with protection failures[J]. IEEE Transmissions on Power Systems, 2004, 19(4): 1818-1820.
[5]  Su Sheng, Li K K, Chan W L, et al. Monte Carlo based maintenance resource allocation considering vulnerability[C]. Transmission and Distribution Conference & Exhibition: Asia and Pacific, August, 2005, Dalian, China.
[6]  Gallos Lazaros K, Panos Argyrakis, Armin Bunde, et al. Tolerance of scale-free networks: from friendly to intentional attack strategies[J]. Physical A, 2004, 344: 504-509.
[7]  丁明, 韩平平. 基于小世界拓扑模型的大型电网脆弱性评估算法[J]. 电力系统自动化, 2006, 30(8): 7-11.
[8]  曹一家, 陈晓刚, 孙可. 基于复杂网络理论的大型电力系统脆弱线路辩识[J]. 电力自动化设备, 2006, 26(12): 1-5.
[9]  Fouad A A, Qin Z, Vitttal V. System vulnerability as a concept to assess power system dynamic security[J]. IEEE Transactions on Power Systems, 1994, 9(2): 1009-1015.
[10]  Nima Amja, Masoud Esmaili. Improving voltage security assessment and ranking vulnerable buses with consideration of power system limits[J]. Electrical Power and Energy Systems, 2003, 25: 705-715.
[11]  Bhavaraju M P, Billinton R, Reppen N D. Requirements for composite system reliability evaluation models[J]. IEEE Transactions on Power System, 1988, 3(1): 149-157.
[12]  Singh C, Patton A D. Protection system reliability modeling: Unreadiness probability and Mean duration of undetected faults[J]. IEEE Transations on Power Systems, 1980, 29: 339-340.
[13]  丁明, 张瑞华. 发输电组合系统可靠性评估的蒙特卡罗模拟[J]. 电网技术, 2000, 24(3): 9-12.
[14]  丁明, 李生虎, 吴红斌. 电力系统概率充分性和概率稳定性的综合评估[J]. 中国电机工程学报, 2003, 23(3): 20-25.
[15]  Reka Albert, Hawoong Jeong, Albert-Laszlo Barabasi. Error and attack tolerance of complex networks[J]. Nature, 2000, 406: 378-382.
[16]  Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393: 440-442.
[17]  孟仲伟, 鲁宗相, 宋靖雁. 中美电网的小世界拓扑模型比较分析[J]. 电力系统自动化, 2004, 28(15): 21-24.
[18]  Chen X G, Sun K, Cao Y J, Wang Shaobu. Identification of vulnerable lines in power grid based on complex network theory[C]. Power Engineering Society General Meetting, June, 2007, Florida, USA.
[19]  丁明, 韩平平. 加权拓扑模型下的小世界电网脆弱性评估[J]. 中国电机工程学报, 2008, 28(10): 20-25.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133