全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于模糊识别的光伏发电短期预测系统

, PP. 83-89

Keywords: 发电预测,神经网络,天气预报,模糊识别,光伏

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着光伏发电系统容量的不断扩大,光伏发电预测技术对于减轻光伏发电系统输出电能的随机性对电力系统的影响具有重要意义。根据光伏发电系统的历史发电量数据和气象数据,分析了天气类型、大气温度和太阳辐射强度等因素对预测结果的影响,采用神经网络对数值天气预测数据进行模糊识别,建立了基于模糊识别的神经网络发电预测模型。研究结果表明,神经网络的结构和扩展速度对预测结果有一定的影响;把数值天气预测数据进行模糊识别后作为神经网络的输入有利于提高神经网络的预测精度;设计的神经网络预测模型具有较高的精度,能够解决光伏发电的随机化问题,有利于电力系统的功率平衡和经济运行。

References

[1]  Femia N, Petrone G, Spagnuolo G, et al. Optimization of perturb and observe maximum power point tracking method[J]. IEEE Transactions on Power Electronics, 2005, 20(4): 963-973.
[2]  Kim I S, Kim M B, Youn M J. New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1027-1035.
[3]  Xiao W, Lind M G J, Dunford W G, et al. Real-time identification of optimal operating points in photovoltaic power systems[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1017-1026.
[4]  廖志凌, 阮新波. 一种独立光伏发电系统双向变换器的控制策略[J]. 电工技术学报, 2008, 23(1): 97-103.
[5]  Liao Zhiling, Ruan Xinbo. Control strategy for Bi-Directional DC/DC converter of a novel stand- alone photo votaic power system[J]. Transactions of China Electrotechnical Society, 2008, 23(1): 97-103.
[6]  Chakraborty S, Weiss M D, Simoes M G. Distributed intelligent energy management system for a single-phase high-frequency AC microgrid[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 97-109.
[7]  Yona A, Senjyu T, Funabashi T. Application of recurrent neural network to short-term-ahead generating power forecasting for photovoltaic system[C]. IEEE Power Engineering Society General Meeting, 2007.
[8]  陈昌松, 段善旭, 殷进军.基于神经网路的光伏阵列发电预测模型的设计[J]. 电工技术学报, 2009, 24(9): 153-158.
[9]  Chen Changsong, Duan Shanxu, Yin Jinjun.Design of photovoltaic array power forecasting model based on neutral network[J]. Transactions of China Electrotechnical Society, 2009, 24(9): 153-158.
[10]  Kem E C, Culachenski E M, Ken G A. Cloud effects on distributed photovoltaic generation: slow transients at the gardner, massachusetts photovoltaic experiment[J]. IEEE Transactions on Energy Conversion, 1989, 4(2): 184-190.
[11]  Jewell W T, Unruh T D. Limits on cloud-induced fluctuation in photovoltaic generation[J]. IEEE Transactions on Energy Conversion, 1999, 5(1):8-14.
[12]  Mellit A, Arab A H, Khorissi N, et al. An ANFIS-based forecasting for solar radiation data from sunshine duration and ambient temperature[C]. IEEE Power Engineering Society General Meeting, 2007.
[13]  Sera D, Teodorescu R, Hantschel J, et al. Optimized maximum power point tracker for fast-changing environmental conditions[J]. IEEE Transactions on Industrial Electronics, 2008, 55(7): 2629-2637.
[14]  飞思科技产品研发中心. 神经网络理论与MATLAB7实现[M]. 北京: 电子工业出版社, 2003.
[15]  韩力群. 人工神经网络理论、设计及应用[M]. 北京:化学工业出版社, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133