全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于PZT的超声波无接触能量传输系统的研究

, PP. 144-150

Keywords: 无接触能量传输,共振,气介质换能器,模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

给出一种基于PZT的超声波无接触能量传输系统。通过机电等效和类比的方法建立了系统的数学模型。结合声波能量传输理论和电路理论对系统模型进行了分析,推导出控制系数的表达式及输出电压与输入电压之间的关系和负载功率表达式,通过实验研究了负载阻抗与负载功率及传输距离与负载功率之间的关系。当换能器间发生共振时,系统能量的传输达到最大值;当系统参数和传输距离一定时,负载功率的大小随负载的变化而变化,并存在一个最大值;负载功率和系统效率随传输距离的变大而减小。理论分析和实验证明,将超声波作为媒介可以摆脱隔板电能传输的局限性,在一定有效距离范围内进行无接触电能传输。

References

[1]  Rosen C A. Analysis and design of ceramic transformers and filter elements[D]. Syracuse, Italy: Syracuse University, 1956.
[2]  Schroeppel E A, Spehr P R. Transcutaneous energy coupling using piezoelectric device: USA, 5749909 [P]. 1998-05-12.
[3]  Shih P, Weng W, Shih W, et al. Acoustic polarization for optimized implantable power transimittion[C]. IEEE 20th International Conference on Micro Electro Mechanical Systems, 2007: 879-882.
[4]  Hu Y, Zhang X, Yang J, et al. Transmitting electric energy through a metal wall by acoustic waves using piezoelectric transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(7): 773-781.
[5]  Sherrit S, Badescu M, Bao X, et al. Efficient electromechanical network models for wireless acoustic-electric feed-throughs[C]. Proceedings of the SPIE Smart Structures Conference, 2005: 362-372.
[6]  Ishiyama T, Kanai Y, Ohwaki J. Impact of a wireless power transmission system using an ultrasonic air transducer for low-power mobile applications[C]. Proceedings of the IEEE Ultrasonics Symposium, 2003, 2: 1368-1371.
[7]  Horowitz S B, Sheplak M, Cattafesta L N, et al. A MEMS acoustic energy harvester[J]. Micromechanics and Microengineering, 2006, 16(9): S174-S181.
[8]  Zhu Y, Moheimani S O R. Ultrasonic energy transmission and conversion using a 2-D MEMS resonator[J]. Electron Device Letters, 2010, 31(4): 374-376.
[9]  Shinoda S, Tai T, Itoh H, et al. Lead zirconate titanate acoustic energy harvester proposed for microelectro- mechanical system/IC integrated systems[J]. Japanese Journal of Applied Physics, 2010, 49(4): 04DL21- 04DL21-5.
[10]  林书玉. 弯曲振动超声换能器的振动特性及辐射声场研究[J]. 陕西师范大学学报(自然科学版), 2003, 31(3): 32-39.
[11]  Gallego Juarez J A. Piezoelectric ceramics and ultrasonic transducers[J]. Physics E: Scientific Instruments, 1989, 22: 804-816.
[12]  Morse P M. Vibration and sound[M]. 2nd ed. New York: McGraw-Hill Publishers, 1948.
[13]  何祚镛. 结构振动与声辐射[M]. 哈尔滨: 哈尔滨工程大学出版社, 2001.
[14]  栾桂冬, 张金铎, 王仁凯. 压电换能器和压电换能器阵[M]. 北京: 北京大学出版社, 1987.
[15]  林书玉. 超声换能器的原理及设计[M]. 科学出版社, 2004.
[16]  张频. 弯振圆盘和阶梯板的辐射阻抗及声场研究[D]. 西安: 陕西师范大学, 2007.
[17]  甘云华, 金龙, 王心坚, 等. 超声波电机自激振荡驱动电路的变频控制特性[J]. 中国电机工程学报, 2008, 28(9): 93-97.
[18]  Basset P, Kaiser A, Legrand B, et al. Complete system for wireless powering and remote control of electrostatic actuators by inductive coupling[J]. IEEE/ASME Transactions on Mechatronics, 2007, 12(1): 23-31.
[19]  Shinohara Na, Hashimoto K. Microwave power transmission technologies for SPS[J]. Journal of the Vacuum Society of Japan, 2008, 51(8): 513-518.
[20]  Karalis A, Joannopoulos J D, Soljačić M. Efficient wireless non-radiative mid-range energy transfer[J]. Annals of Physics, 2008, 32(3): 34-48.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133