全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

改进加窗频谱峰值拟合算法及谐波分析应用

, PP. 8-15

Keywords: 最小二乘法,多项式拟合,电力谐波,频谱校正,谐波分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

加窗FFT是目前应用最为广泛的谐波分析方法。但非同步采样时,离散频谱校正中存在计算准确度与实时性的矛盾。论文结合三角自卷积窗的频谱特性,建立了基于最小二乘法的三角自卷积窗加权电力谐波分析算法。首先利用三角自卷积窗对信号进行加权,以抑制频谱泄漏;其次,采用最小二乘法进行离散频谱校正,构造可以根据精度要求进行调节的频谱校正拟合多项式;最后,根据最小二乘拟合多项式,建立简单、易行的谐波幅值、初相角和频率计算式。非同步采样和非整数周期截断条件下,对白噪声、基波频率波动等情况的谐波参数分析仿真实验验证了算法的有效性和准确性。

References

[1]  Chang G W, Chen C I, Liu Y J, et al. Measuring power system harmonics and interharmonics by an improved fast Fourier transform-based algorithm[J]. IET Generation, Transmission & Distribution, 2008, 2(2): 193-201.
[2]  Hagh M T, Taghizadeh H, Razi K. Harmonic minimization in multilevel inverters using modified species-based particle swarm optimization[J]. IEEE Transactions on Power Electric, 2010, 24(10): 2259- 2267.
[3]  蔡涛, 段善旭, 刘方锐. 基于实值MUSIC算法的电力谐波分析方法[J]. 电工技术学报, 2009, 24(12): 149-155.
[4]  Yang Rengang, Xue Hui. A novel algorithm for accurate frequency measurement using transformed consecutive points of DFT[J]. IEEE Transactions on Power Systems, 2008, 23(3): 1057-1062.
[5]  Ferrero A, Ottoboni R. High-accuracy Fourier analysis based on synchronous sampling techniques[J]. IEEE Transactions on Instrumentation and Measurement, 1992, 41(6): 780-786.
[6]  庞浩, 李东霞, 俎云霄, 等. 应用FFT进行电力系统谐波分析的改进算法[J]. 中国电机工程学报, 2003, 23(6): 50-54.
[7]  Chen K F, Li Y F. Combining the Hanning windowed interpolated FFT in both directions[J]. Computer Physics Communications, 2008, 178(12): 924-928.
[8]  Agrez D. Dynamics of frequency estimation in the frequency domain[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(6): 2111-2118.
[9]  Harris F J. On the use of windows for harmonic analysis with the discrete Fourier transform[J]. Proceedings of IEEE, 1978, 66(1): 51-83.
[10]  曾博, 滕召胜, 高云鹏, 等. 基于Rife-Vincent窗的高准确度电力谐波相量计算方法[J]. 电工技术学报, 2009, 24(8): 154-159.
[11]  Nuttall A H. Some windows with very good sidelobe behavior [J]. IEEE Transactions on Acoustics Speech Signal Processing, 1981, 29(1): 84-91.
[12]  卿柏元, 滕召胜, 高云鹏, 等. 基于Nuttall窗双峰插值FFT的高精度电力谐波分析方法[J]. 中国电机工程学报, 2008, 28(2): 48-52.
[13]  张介秋, 梁昌洪, 陈硕圃. 基于卷积窗的电力系统谐波理论分析与算法[J]. 中国电机工程学报, 2004, 24(11): 48-52.
[14]  黄纯, 江亚群. 谐波分析的加窗插值改进算法[J]. 中国电机工程学报, 2005, 25(15): 26-32.
[15]  温和, 滕召胜, 王一, 等. 基于三角自卷积窗的介损角高精度测量算法[J]. 电工技术学报, 2009, 24(2): 164-169.
[16]  Wen H, Teng Z S, Guo S Y, et al. Triangular self-convolution window with desirable sidelobe behaviors for harmonic analysis of power system[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(3): 543-552.
[17]  Courses E, Surveys T. Dynamics of frequency estimation in the frequency domain[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(6): 2111-2118.
[18]  Antoni J, Schoukens J. A comprehensive study of the bias and variance of frequency-response-function measurements: optimal window selection and overlapping strategies[J]. Automatica, 2007, 43(10): 1723-1736.
[19]  Agre D. Interpolation in the frequency domain to improve phase measurement[J]. Measurement, 2008, 41(2): 151-159.
[20]  Belega D, Dallet D. Amplitude estimation by a multipoint interpolated DFT approach [J]. IEEE Transactions on Instrumentation and Measurment, 2009, 58(5): 1316-1323.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133