全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

云平台下并行总体经验模态分解局部放电信号去噪方法

, PP. 213-222

Keywords: 局部放电,信号去噪,总体经验模态分解,MapReduce,包络线重构

Full-Text   Cite this paper   Add to My Lib

Abstract:

信号去噪是对输变电设备进行在线监测和诊断时首要解决的问题。鉴于总体经验模态分解(EEMD)方法对局部放电信号进行去噪的优势,设计了基于MapReduce模型的并行化EEMD算法(MR-EEMD),利用云平台提高算法的计算效率。在对分段包络线进行重构时,针对矩形窗的固有缺陷,提出了基于局部平稳度的自适应分段包络线重构算法(LF-ASER)进行分段边界的补偿处理,使重构的包络线误差减小到给定阈值范围内。实验结果表明MR-EEMD算法相对于EEMD性能提升显著,适合处理变压器的局部放电等高采样率信号,同时保持了EEMD去噪效果,并获得较高的可扩展性和加速比。

References

[1]  郭俊, 吴广宁, 张血琴, 等. 局部放电检测技术的现状和发展[J]. 电工技术学报, 2005, 20(2):29-35. Guo Jun, Wu Guangning, Zhang Xueqin, et al. The actuality and perspective of partial discharge detection techniques[J]. Transactions of China Electrotechnical Society, 2005, 20(2): 29-35.
[2]  李化, 杨新春, 李剑, 等. 基于小波分解尺度系数能量最大原则的GIS局部放电超高频信号自适应小波去噪[J]. 电工技术学报, 2012, 27(5): 84-91. Li Hua, Yang Xinchun, Li Jian, et al. The maximum energy of wavelet decomposition approximation- related adaptive wavelet de-nosing for partial discharge UHF pulse in GIS[J]. Transactions of China Electro- technical Society, 2012, 27(5): 84-91.
[3]  江天炎, 李剑, 杜林, 等. 粒子群优化小波自适应阈值法用于局部放电去噪[J]. 电工技术学报, 2012, 27(5): 77-83. Jiang Tianyan, Li Jian, Du Lin, et al. De-nosing for partial discharge signals using PSO adaptive wavelet threshold estimation[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 77-83.
[4]  Huang Norden E, Zhang Shen, Long Steven R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. The Royal Society, 1998, 454(1971): 903-995.
[5]  钱勇, 黄成军, 陈陈, 等. 基于经验模态分解的局部放电去噪方法[J]. 电力系统自动化, 2005, 29(12): 53-60. Qian Yong, Huang Chenjun, Chen Chen, et al. Denoising of partial discharge based on empirical mode decomposition[J]. Automation of Electric Power Systems, 2005, 29(12): 53-60.
[6]  Lin Meiyan, Tai Chengchi, Tang Yawen, et al. Partial discharge signal extracting using the empirical mode decomposition with wavelet transform[C]. Inter- national Conference on Lightning, Chengdu, 2011: 420- 424.
[7]  李天云, 高磊, 聂永辉, 等. 基于经验模式分解处理局部放电数据的自适应直接阈值算法[J]. 中国电机工程学报, 2006, 26(15): 29-34. Li Tianyun, Gao Lei, Nie Yonghui, et al. A new adaptive direct-threshold algorithm to partial discharge data processing based on empirical mode decomposition[J]. Proceedings of the CSEE, 2006, 26(15): 29-34.
[8]  Xu Jia, Yang Fan, Ma Fenghai. Research on nonstationary signal denoising based on EEMD filter[C]. International Conference on Multimedia Technology (ICMT), Ningbo, 2010: 1-3.
[9]  姚林朋, 郑文栋, 钱勇, 等. 基于集合经验模态分解的局部放电信号的窄带干扰抑制[J]. 电力系统保护与控制, 2011, 39(22): 133-139. Yao Linpeng, Zheng Wendong, Qian Yong, et al. A narrow-band interference suppression method based on EEMD for partial discharge[J]. Power System Protection and Control, 2011, 39(22): 133-139.
[10]  胡利萍, 宋恩亮, 李宝清, 等. 一种适用于流数据分析的快速EMD算法[J]. 振动与冲击, 2012, 31(8): 116-120. Hu Liping, Song Enliang, Li Baoqing, et al. A new fast EMD algorithm for streaming data analysis[J]. Journal of Vibration and Shock, 2012, 31(8): 116-120.
[11]  Damerval C, Meignen S, Perrier V. A fast algorithm for bidimensional EMD[J]. IEEE Signal Processing Letters, 2005, 12(10): 701-704.
[12]  Chen Q, Huang N, Riemenschneider S, et al. A b-
[13]  spline approach for empirical mode decompositions[J]. Advances in Computational Mathematics, 2006, 24(1): 171-195.
[14]  胡劲松, 杨世锡. 基于有效数据的经验模态分解快速算法研究[J]. 振动、测试与诊断, 2006, 26(2): 119-121. Hu Jingsong, Yang Shixi. Study on valid-data-based EMD fast algorithm[J]. Journal of Vibration, Measurement & Diagnosis, 2006, 26(2): 119-121.
[15]  Qin S R, Qin Y, Mao Y F. Fast implementation of orthogonal empirical mode decomposition and its application into singular signal detection[C]. IEEE International Conference on Signal Processing and Communications, Dubai United Arab Emirates, 2007: 1215-1218.
[16]  White T. Hadoop: The Definitive Guide[M]. 1st ed. O’Reilly Media Inc, 2009.
[17]  Dean J, Ghemawat S. MapReduce: Simplified data processingon large clusters[J]. Communications of the ACM, 2008, 51(1): 107-113.
[18]  刘鹏. 云计算[M]. 2版. 北京: 电子工业出版社, 2011.
[19]  Wu Z, Huang N E. Ensemble empirical mode decom-
[20]  唐炬, 许中荣, 孙才新, 等. 应用复小波变换抑制GIS局部放电信号中白噪声干扰的研究[J]. 中国电机工程学报, 2005, 25(16): 30-34.
[21]  Tang Ju, Xu Zhongrong, Sun Caixin, et al. Application of complex wavelet transform to suppress white-
[22]  23 noise interference in GIS PD signals[J]. Proceedings of the CSEE, 2005, 25(16): 30-34.
[23]  苗莎, 郑晓薇. 三次插值样条曲线拟合多核并行算法[J]. 计算机应用, 2010,30(12): 3194-3196. Miao Sha, Zheng Xiaowei. Multi-core parallel algorithm for cubic spline curve fitting[J]. Journal of Computer Applications, 2010, 30(12): 3194-3196.
[24]  Michael G Noll. Benchmarking and Stress Testing an Hadoop Cluster With TeraSort, TestDFSIO & Co. [EB/OL]. 2011.4. http://www.michael-noll.com/blog/
[25]  2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench/.
[26]  position: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[27]  Wu T Y, Chung Y L. Misalignment diagnosis of rotating machinery through vibration analysis via the hybrid EEMD and EMD approach[J]. Smart Materials and Structures, 2009, 18(9): 7566-7579.
[28]  Flandrin P, Rilling G, Gonçalvès P. EMD equivalent filter banks, from interpretation to applications[J]. Hilbert-Huang Transform and Its Applications, 2005: 57-74.
[29]  George Tsolis, Thomas D Xenos. Signal Denoising using empirical mode decomposition and higher order statistics[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2011, 4(2): 91-106.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133